Основные способы получения углеводородов. Декарбоксилирование ароматических карбоновых кислот как реакция электрофильного замещения Декарбоксилирование муравьиной кислоты

Процесс отщепления двуокиси углерода (CO 2) от органических кислот или аминокислот. В биол, системах существенное значение - биохимическое и физиологическое - имеет Д. аминокислот и кетокислот. Реакция Д. может составлять часть общего механизма превращения аминокислот, в результате чего образуются биогенные амины, обладающие высокой фармакологической активностью.

Д. аминокислот является одним из основных путей промежуточного обмена аминокислот у всех организмов. В зависимости от хим. природы аминокислоты в результате Д. образуются биогенные амины (см.) или новые бета-, и гамма-монокарбоновые аминокислоты. Реакции Д. катализируются специфическими ферментами - декарбоксилазами (см.) и протекают по следующей схеме:

Ферментативному Д. подвергаются только L-стереоизомеры аминокислот; исключение составляет мезо-альфа, эпсилон-диаминопимелиновая к-та, в к-рой содержится два стереоизомерных атома углерода, один находится в L-, а другой в D-конфигурации. В организме могут происходить сопряженные реакции Д. и переаминирования (см.) или реакции Д. и дезаминирования (см.) лизина, аргинина и их производных. Так, у бактерий Pseudomonas обнаружен фермент, катализирующий окислительное превращение L-лизина до дельта-аминовалериановой к-ты, CO 2 и NH 3:

Реакция Д. аминокислот в животных тканях не является количественно преобладающей реакцией обмена аминокислот, о чем свидетельствует относительно низкая активность декарбоксилаз в их тканях и сравнительно небольшое количество субстратов для Д. Однако продукты Д. имеют большое физиол, значение, биогенные амины, напр., физиологически активны даже в очень низких концентрациях. Впервые К. М. Розанов в 1936 г. показал образование гистамина в животных тканях путем Д. гистидина. В тканях животных интенсивно протекает Д. диоксифенилаланина (см.) с образованием дофамина (окситирамина), который является, по современным представлениям, предшественником норадреналина и адреналина в организме животных. Гистамин понижает кровяное давление, а тирамин, триптамин и особенно 5-окситриптамин (серотонин) обладают гипертензивным действием. Высокой фармакол. активностью обладают некоторые производные этих аминов (адреналин, норадреналин, эфедрин, холин и др.). Ряд данных свидетельствует о повышении кровяного давления при нарушении кровообращения в почках (ишемия и др.) в связи с накоплением в почечной ткани аминов, для окисления которых необходим кислород. Предполагается, что некоторые расстройства психической деятельности обусловлены интоксикацией организма биогенными аминами, образовавшимися в тканях. Т. о., процессы Д. аминокислот в организме, возможно, участвуют в регуляции некоторых физиол, процессов. Кроме того, продукты Д. аминокислот - таурин, бета-аланин и другие необходимы для биосинтеза ряда сложных соединений, выполняющих специфические биол, функции. Ниже представлены уравнения наиболее распространенных реакций Д. аминокислот и их производных в организме животных и человека.

В животных тканях доказано наличие фермента декарбоксилазы ароматических L-аминокислот (КФ 4.1.1.28), катализирующего Д. почти всех ароматических аминокислот.

Ортотирозин, метатирозин и альфа-метилпроизводные триптофана, тирозина и ДОФА также декарбоксилируются этим ферментом. Ферментные препараты из мозгового слоя надпочечников и почек крыс не катализируют, однако, Д. триптофана и тирозина, но декарбоксилируют ДОФА. В тучных клетках найден особый фермент, катализирующий, по-видимому, Д. гистидина. Имеются данные, что триптофан декарбоксилируется ферментными препаратами из почек лишь после окисления его до 5-окситриптофана и что именно 5-окситриптофан является субстратом для Д., в результате к-рого образуется физиологически активный 5-окситриптамин (серотонин).

Большое физиол. значение для человека и животных имеет Д.L-глутамино-вой к-ты (см. Глутаминовая кислота). Открытие гамма-аминомасляной к-ты (ГАМК) последовало за обнаружением в гомогенатах мозга L-глутаматдекар-боксилазы (КФ 4.1.1.15), катализирующей Д. L-глутамата с образованием гамма-аминомасляной кислоты.

Есть основания считать, что ГАМК относится к числу передатчиков нервных импульсов. Кроме того, ГАМК может переаминироваться с пировиноградной, альфа-кетоглутаровой и, возможно, рядом других кетокислот с образованием соответствующей аминокислоты и полуальдегида янтарной к-ты; окисление последнего до янтарной к-ты обеспечивает функционирование обходного пути окисления L-глутами-новой к-ты, минуя альфа-кетоглутаровую к-ту. На схеме показано сопряжение двух путей окисления L-глутамино-вой к-ты с циклом Трикарбоновых к-т (см. Трикарбоновых кислот цикл).

Для митохондрий мозга именно L-глутаминовая к-та, а не глюкоза является основным субстратом дыхания. В этой связи обходной путь превращения L-глутаминовой к-ты с участием глутаматдекарбоксилазы приобретает большое физиол, значение. По полученным на высших растениях данным В. Л. Кретовича (1972), регулированию системы глутаминовая к-та ГАМК + CO 2 принадлежит существенная роль в общем процессе регуляции содержания в клетке глутаминовой к-ты и глутамина, являющегося исходным веществом для биосинтеза многих жизненно важных для растительного организма соединений. Вероятно, что такую же роль Д. L-глутаминовой к-ты играет в организме животных и человека.

Процесс Д. широко распространен у микроорганизмов. При гниении белков образование аминов вызывается Д. различных аминокислот под действием бактериальных декарбоксилаз (см. Гниение).

Значительных достижений в исследовании Д. аминокислот у микроорганизмов добились советские исследователи. С. Р. Мардашев в 1947 г. из клеток бактерии Pseudomycobacterium n. sp. выделил специфическую декарбоксилазу, отщепляющую CO 2 от бета-COOH-группы L-аспарагиновой к-ты с образованием a-аланина. В 1950 г. в той же лаборатории был выделен вид Micrococcus п. sp., содержащий декарбоксилазу, специфичную в отношении L-гистидина. Используя эти бактерии, С. Р. Мардашев с сотр. разработал быстрый и точный метод определения аспарагиновой к-ты и гистидина в белках. Д. L-аспарагиновой к-ты является уникальной реакцией, поскольку при этом декарбоксилируется бета-COOH-, а не альфа-COOH-группа, как это обычно происходит при Д. аминокислот.

Ферментные препараты аспартат-бета-декарбоксилазы (аспартат-1-декар-боксилазы; КФ 4.1.1.11) были получены из ряда микроорганизмов, в т. ч. и из Achromobacter; в последнем случае фермент был получен в кристаллическом состоянии. Этот фермент активируется не только пиридоксаль-5"-фосфатом, что характерно для декарбоксилаз аминокислот, но и каталитическими количествами альфа-кетокислот.

Реакции Д. аминокислот широко распространены также у высших зеленых растений. Важно отметить, что реакции Д. у растений имеют прямое отношение к биосинтезу ряда алкалоидов.

С. Р. Мардашевым и его сотр. было установлено, что уроканиновая к-та является ингибитором гистидиндекарбоксилазы (КФ 4.1.1.22). Т. к. содержание уроканиновой к-ты в коже больных при некоторых дерматозах понижено, можно было предвидеть в этом случае более активное Д. гистидина с образованием гистамина, способствующего дерматозу.

Была сделана попытка применения леч. мазей, содержащих уроканиновую к-ту, для терапии дерматозов; предварительные данные свидетельствуют о положительном эффекте.

Гамма-Аминомасляная к-та - продукт Д. L-глутамата - применяется для лечения патол, состояний, связанных с нарушением функций ц. н. с.: при ослаблении памяти, атеросклерозе мозговых сосудов и нарушениях мозгового кровообращения, после перенесенных травм и параличей, при головной боли, бессоннице, головокружениях, связанных с гипертонической болезнью, в педиатрии - при умственной отсталости.

Д. кетокислот было впервые обнаружено К. Нейбергом в 1911 г. В экстрактах из пивных дрожжей им были найдены специфические ферменты, катализирующие Д. пировиноградной, альфа-кетомасляной, альфа-кетовалериановой и других a-кетокислот с образованием соответствующего альдегида и CO 2 . Реакция Д. кетокислот протекает по схеме:

Позднее было доказано существование Д. альфа-кетоглутаровой к-ты. Из экстрактов высших растений были выделены специфические декарбоксилазы альфа-кетоглутаровой и щавелево-уксусной к-т. Было показано, что Д. щавелево-уксусной к-ты (оксалата) с образованием пировиноградной к-ты (пирувата) осуществляется p-декарбоксилазой, атакующей бета-COOH-группу, что отличает ее от альфа-декарбоксилазы Нейберга.

В тканях животных альфа-кетокислоты подвергаются окислительному Д. с образованием соответствующих укороченных на один атом углерода карбоновых к-т и CO 2 . В процессе тканевого обмена углеводов, жиров и белков в качестве промежуточных продуктов образуются Пировиноградная, альфа-кетоглутаровая, щавелево-уксусная и другие а-кетокислоты. Накопление их (особенно пировиноградной к-ты, образующейся также в результате других метаболических превращений) может привести к нарушению физиол, функций, и в первую очередь - функций ц. н. с. Поскольку все декарбоксилазы a-кетокислот являются сложными ферментами, коферментом которых является фосфорилированная форма витамина B 1 -тиаминпирофосфат, то при B1-авитаминозе имеют место нарушения функций нервной системы, напр, при полиневрите.

Выяснению путей окисления пировиноградной к-ты посвящено много работ. В 1943 г. Г. Кребс предложил схему превращения пировиноградной к-ты через цикл ди- и трикарбоновых к-т (см. Трикарбоновых кислот цикл), в к-ром одна молекула пировиноградной к-ты окисляется с образованием трех молекул CO 2 и двух молекул H 2 O (см. Окисление биологическое). Выяснены детали механизма этой реакции и пути ее регуляции. Основным путем превращения пировиноградной к-ты в животных тканях, у растений и у аэробных микроорганизмов является ее окислительное Д. до ацетил-КоА, катализируемое мультиферментным пируватдегидрогеназным комплексом. Д. альфа-кетоглутаровой к-ты также осуществляется при участии аналогичного альфа-кетоглутаратдегидрогеназного комплекса.

Полное окисление альфа-кетокислот, начинающееся с окислительного Д., до CO 2 и H2O способствует освобождению энергии, необходимой для протекания процессов жизнедеятельности в любых живых организмах, причем значительная часть этой энергии накапливается в высокоэргических пирофосфатных связях АТФ.

Библиография: Березов Т. Т. и Лерман М. И. диаминопимелиновая кислота - новая природная аминокислота, Усп. совр, биол., т. 51, в. 3, с. 285, 1961, библиогр.; Браунштейн А. Е. Биохимия аминокислотного обмена, М., 1949, библиогр.; он же, Главные пути ассимиляции и диссимиляции азота у животных, М., 1957, библиогр.; Каган 3. С. и Игнатьeва Л. И. Ал-лостерические свойства декарбоксилазы мезо-a, е-диаминопимелиновой кислоты у накапливающего L-лизин штамма Вге-vibacterium-22, Докл. АН СССР, т. 197, с. 1196, 1971; Каган 3. С., Крето-вич В. Л. иДроновА. С. Влияние кетокислот на декарбоксилазу глютаминовой кислоты у пшеницы, Биохимия, т. 28, в. 5, с. 824, 1963, библиогр.; М а р-д а ш e в С. Р. Энзиматическое декарбоксилирование аминокислот, Усп. совр, биол., т. 28, в. 3, с. 365, 1949, библиогр.; Blaschko H. The amino acid decarboxylases of mammalian tissue, Advanc. Enzymol., v. 5, p. 67, 1945, bibliogr.; B o e k e г E. А. а. S n e 1 1 E. E. Amino acid decarboxylases, в кн.: Enzymes, ed. by P. D. Boyer, v. 6, p. 217, N. Y.- L., 1972, bibliogr.; Lovenberg W., W e i s s b а с h H. a. U d e n f r i-e n d S. Aromatic L - amino acid decar-boxvlase, J. Biol. Chem., v. 237, p. 89, 1962; Meister A. Biochemistry of the amino acids, v. 1-2, N. Y.- L., 1965; M o r i g u с h i М., Jamamoto T. a. S o d a K. Studies on L-lysine decarboxylase from Bacterium cadaveris, Bull. Inst. Chem. Res., Kyoto Univ., v. 51, № 6, p. 333, 1973, bibliogr.; Morris D. R. a. Fillingame R. H. Regulation of amino acid decarboxylation, Ann. Rev. Biochem., v. 43, p. 303, 1974, bibliogr.

Т. Т. Березов, 3. С. Каган.

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

ДЕКАРБОКСИЛИРОВАНИЕ , элиминирование СО 2 из карбоксильной группы карбоновых кислот или карбоксилатной группы их солей. Осуществляют обычно нагреванием в присутствии кислот или оснований. ДЕКАРБОКСИЛИРОВАНИЕ монокарбоновых насыщенных кислот протекает, как правило, в жестких условиях. Так, прокаливание ацетата Na с избытком натронной извести приводит к отщеплению СО 2 и образованию метана: CH 3 COONa + NaOH CH 4 + Na 2 CO 3 . ДЕКАРБОКСИЛИРОВАНИЕ облегчается для кислот, содержащих в a -положении электроотрицательные группы. Легкое ДЕКАРБОКСИЛИРОВАНИЕ ацетоуксусной (формула I) и нитроуксусной кислот (II) обусловлено возникновением циклический переходного состояния:


Д. гомологов нитроуксусной кислоты - препаративный метод получения нитроалканов. Наиб. легко осуществляется ДЕКАРБОКСИЛИРОВАНИЕ кислот, карбоксильная группа которых непосредственно связана с др. электроф. группами. Например, нагревание пировиноградной кислоты с конц. H 2 SO 4 легко приводит к ацетальдегиду:

При ДЕКАРБОКСИЛИРОВАНИЕ щавелевой кислоты в тех же условиях кроме СО 2 образуются Н 2 О и СО. Д. облегчается также, если карбоксильная группа связана с ненасыщенным атомом С; так, ДЕКАРБОКСИЛИРОВАНИЕ монокалиевой соли ацетилендикарбоновой кислоты - удобный метод синтеза пропиоловой кислоты:

Д. ацетиленкарбоновой кислоты осуществляют при комнатной температуре в присут. солей Сu: НСССООН НС=СН + СО 2 . Ароматич. кислоты декарбоксилируются, как правило, в жестких условиях, например, при нагревании в хинолине в присутствии металлич. порошков. Таким методом в присутствии Сu получают фуран из пирослизевой кислоты. ДЕКАРБОКСИЛИРОВАНИЕ ароматические кислот облегчается при наличии электроф. заместителей, например, тринитробензойная кислота декарбоксилируется при нагревании до 40-45 °С. Д. паров карбоновых кислот над нагретыми катализаторами (карбонаты Са и Ва, Аl 2 О 3 и др.) - один из методов синтеза кетонов: 2RCOOH : RCOR + Н 2 О + СО 2 . При ДЕКАРБОКСИЛИРОВАНИЕ смеси двух кислот образуется смесь несимметричного и симметричного кетонов. ДЕКАРБОКСИЛИРОВАНИЕ натриевых солей карбоновых кислот при электролизе их конц. водных растворов (см. Кольбе реакции) - важный метод получения алканов. К реакциям ДЕКАРБОКСИЛИРОВАНИЕ, имеющим препаративное значение, относится галогендекарбоксилирование - замещение карбоксильной группы в молекуле на галоген. Реакция протекает под действием LiCl (или N-бромсукцинимида) и тетраацетата Рb на карбоновые кислоты, а также свободный галогенов (Сl 2 , Вr 2 , I 2) на соли карбоновых кислот, например: RCOOM RHal (М = Ag, К, Hg, T1). Серебряные соли дикарбоновых кислот под действием I 2 легко превращаются в лактоны:


Важную роль играет также окислит. ДЕКАРБОКСИЛИРОВАНИЕ - элиминирование СО 2 из карбоновых кислот, сопровождающееся окислением. В зависимости от применяемого окислителя такое ДЕКАРБОКСИЛИРОВАНИЕ приводит к алкенам, сложным эфирам и др. продуктам. Так, при ДЕКАРБОКСИЛИРОВАНИЕ фенилуксусной кислоты в присутствии пиридин-N-оксида образуется бензальдегид:

Подобно ДЕКАРБОКСИЛИРОВАНИЕ солей карбоновых кислот происходит ДЕКАРБОКСИЛИРОВАНИЕ элементоорганическое производных и сложных эфиров, например:


Д. сложных эфиров осуществляют также под действием оснований (алкоголятов, аминов и др.) в спиртовом (водном) растворе или хлоридов Li и Na в ДМСО. Большое значение в разнообразных процессах обмена веществ имеет ферментативное ДЕКАРБОКСИЛИРОВАНИЕ Существует два типа подобных реакций: простое ДЕКАРБОКСИЛИРОВАНИЕ (обратимая реакция) и окислительное ДЕКАРБОКСИЛИРОВАНИЕ, в котором происходит сначала ДЕКАРБОКСИЛИРОВАНИЕ, а затем дегидрирование субстрата. По последнему типу в организме животных и растений осуществляется ферментативное ДЕКАРБОКСИЛИРОВАНИЕ пировиноградной и a -кетоглутаровой кислот - промежуточных продуктов распада углеводов, жиров и белков (см. Трикарбоновых кислот цикл). Широко распространено также ферментативное ДЕКАРБОКСИЛИРОВАНИЕ аминокислот у бактерий и животных.

Химическая энциклопедия. Том 2 >>

Реакции карбоновых кислот можно подразделить на несколько больших групп:

1) Восстановление карбоновых кислот

2) Реакции декарбоксилирования

3) Реакции замещения при -углеродном атоме карбоновых кислот

4) Реакции нуклеофильного замещения у ацильного атома углерода.

Мы последовательно рассмотрим каждую из этих групп реакций.

18.3.1. Восстановление карбоновых кислот

Карбоновые кислоты восстанавливаются до первичных спиртов с помощью литийалюминийгидрида. Восстановление идет в более жестких условиях, чем это требуется для восстановления альдегидов и кетонов. Восстановление обычно проводят при кипячении в растворе тетрагидрофурана.

Диборан B 2 H 6 также восстанавливает карбоновые кислоты до первичных спиртов. Восстановление карбоксильной группы до CH 2 OH под действием диборана в ТГФ осуществляется в очень мягких условиях и не затрагивает некоторые функциональные группы (NO 2 ; CN;
), поэтому этот метод в некоторых случаях оказывается предпочтительнее.

18.3.2. Декарбоксилирование

Этим термином объединяется целая группа разнообразных реакций, в которых происходит отщепление CO 2 и образующиеся соединения содержат на один атом углерода меньше, чем исходная кислота.

Самой важной из реакций декарбоксилирования в органическом синтезе является реакция Бородина-Хунсдиккера, в которой серебряная соль карбоновой кислоты при нагревании с раствором брома в CCl 4 превращается в алкилгалогенид.

Для успешного проведения этой реакции требуется применять тщательно высушенные серебряные соли карбоновых кислот и выход алкилгалогенида колеблется в широких пределах в зависимости от степени очистки и обезвоживания соли. Этого недостатка лишена модификация, где вместо серебряных используют ртутные соли. Ртутную соль карбоновой кислоты не выделяют в индивидуальном виде, а в индифферентном растворителе нагревают смесь карбоновой кислоты, желтой окиси ртути и галогена. Этот метод, как правило, приводит к более высокому и воспроизводимому выходу.

Для реакции Бородина-Хунсдиккера установлен цепной радикальный механизм. Образующийся в первой стадии ацилгипобромит подвергается гомолитическому расщеплению с образованием карбоксильного радикала и атома брома. Карбоксильный радикал теряет CO 2 и превращается в алкильный радикал, который затем регенерирует цепь, отщепляя атом брома от ацилгипобромита.

Инициирование цепи:

Развитие цепи:

Оригинальный метод окислительного декарбоксилирования карбоновых кислот был предложен Дж. Кочи в 1965 году. Карбоновые кислоты окисляются тетраацетатом свинца, при этом происходит декарбоксилирование и в качестве продуктов реакции зависимости от условий получаются алканы, алкены или эфиры уксусной кислоты. Механизм этой реакции детально не установлен, предполагается следующая последовательность превращений:

Алкен и сложный эфир, по-видимому, образуются из карбкатиона соответственно за счет отщепления протона или захвата ацетат-иона. Введение в реакционную смесь галогенид-иона практически нацело подавляет оба эти процесса и приводит к образованию алкилгалогенидов.

Эти два метода декарбоксилирования хорошо дополняют друг друга. Декарбоксилирование Ag или Hg-солей дает наилучшие результаты для карбоновых кислот с первичным радикалом, тогда как при окислении тетраацетатом свинца в присутствии хлорида лития наиболее высокие выходы алкилгалогенидов наблюдаются для карбоновых кислот со вторичным радикалом.

Другой, имеющей важное препаративное значение реакцией декарбоксилирования карбоновых кислот, является электролитическая конденсация солей карбоновых кислот, открытая в 1849 году Г. Кольбе. Он проводил электролиз водного раствора ацетата калия в надежде получить свободный радикал CH 3 , однако вместо него на аноде был получен этан. Аналогично при электролизе водного раствора натриевой соли валериановой кислоты вместо бутильного радикала был получен н.октан. Электрохимическое окисление карбоксилат-ионов оказалось исторически первым общим методом синтеза предельных углеводородов. При электролизе натриевых или калиевых солей предельных алифатических кислот в метаноле или водном метаноле в электролизере а платиновыми электродами при 0-20С и с достаточно высокой плотностью тока образуются алканы с выходом 50-90%.

Однако при наличии алкильной группы в -положении выходы резко снижаются и редко превышают 10%.

Эта реакция оказалась особенно полезной для синтеза диэфиров дикарбоновых кислот ROOC(CH 2) n COOR с n от 2 до 34 при электролизе щелочных солей полуэфиров дикарбоновых кислот.

В современном органическом электросинтезе широко применяется перекрестная электролитическая конденсация, заключающаяся в электролизе смеси солей карбоновой кислоты и моноэфира дикарбоновой кислоты.

Электролиз раствора этих двух солей приводит к образованию смеси трех сильно отличающихся друг от друга продуктов реакции, которые могут быть легко разделены перегонкой на отдельные компоненты. Это метод позволяет удлинять углеродный скелет карбоновой кислоты на любое число атомом углерода практически за одну операцию.

Электролитическая конденсация ограничена солями карбоновых кислот с неразветвленным радикалом и солями полуэфиров дикарбоновых кислот. Соли ,- и ,-ненасыщенных кислот не подвергаются электрохимической конденсации.

Для реакции Кольбе был предложен радикальный механизм, включающий три последовательные стадии: 1) окисление карбоксилат-ионов на аноде до карбоксилат-радикалов
; 2) декарбоксилирование этих радикалов до алкильных радикалов и двуокиси углерода; 3) рекомбинация алкильных радикалов.

При высокой плотности тока высокая концентрация алкильных радикалов у анода способствует их димеризации, при низкой плотности тока алкильные радикалы или диспропорционируют с образованием алкена или алкана или отщепляют атом водорода от растворителя.

Соли карбоновых кислот подвергаются декарбоксилированию также при пиролизе. Некогда пиролиз кальциевых или бариевых солей карбоновых кислот был основным методом получения кетонов. В XIX веке “сухая перегонка” ацетата кальция была основным методом получения ацетона.

В дальнейшем метод был усовершенствован таким образом, что в нем отсутствует стадия получения солей. Пары карбоновой кислоты пропускают над катализатором - окислами марганца, тория или циркония при 380-400 0 . Наиболее эффективным и дорогим катализатором является двуокись тория.

В простейших случаях кислоты с числом атомов углерода от двух до десяти превращаются в симметричные кетоны с выходом порядка 80% при кипячении с порошкообразным железом при 250-300  . Этот способ находит применение в промышленности. Наиболее успешно пиролитический метод и в настоящее время применяется для синтеза пяти- и шестичленных циклических кетонов из двухосновных кислот. Например, из смеси адипиновой кислоты и гидроксида бария (5%) при 285-295  получают циклопентанон с выходом 75-85%. Циклооктанон образуется из азелаиновой кислоты при нагревании с ThO 2 c выходом не более 20%, этот метод мало пригоден для получения циклоалканонов с большим числом атомов углерода.