Применение производной в различных науках. Презентация "применение производной в науке и в жизни". Заряд, протекающий через проводник, меняется по закону

Министерство образования Саратовской области

Государственное автономное профессиональное образовательное учреждение Саратовской области «Энгельсский политехникум»

ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ В РАЗНИЧНЫХ ОБЛАСТЯХ НАУКИ

Выполнила: Саркулова Нургуля Сергеевна

студентка группы КШИ-216/15

(Конструирование, моделирование и

технология швейных изделий)

Научный руководитель:

Вербицкая Елена Вячеславовна

преподаватель математики ГАПОУ СО

«Энгельсский политехникум»

2016

Введение

Роль математики в различных областях естествознания очень велика. Недаром говорят «Математика – царица наук, физика ее правая рука, химия – левая».

Предмет исследования – производная.

Ведущая цель - показать значимость производной не только в математике, но и в других науках, её важность в современной жизни.

Дифференциальное исчисление – это описание окружающего нас мира, выполненное на математическом языке. Производная помогает нам успешно решать не только математические задачи, но и задачи практического характера в разных областях науки и техники.

Производная функции используется всюду, где есть неравномерное протекание процесса: это и неравномерное механическое движение, и переменный ток, и химические реакции и радиоактивный распад вещества и т.д.

Ключевой и тематический вопросы данного реферата:

1. История возникновения производной.

2. Зачем изучать производные функций?

3. Где используются производные?

4. Применение производных в физике, химии, биологии и других науках.

5. Выводы

Я решила написать работу на тему «Применение производной в различных областях науки», потому что считаю эту тему очень интересной, полезной и актуальной.

В своей работе я расскажу о применении дифференцирования в различных областях науки, таких как химия, физика, биология, география и т. д. Ведь все науки неразрывно связаны между собой, что очень хорошо видно на примере рассматриваемой мною темы.

Применение производной в различных областях науки

Из курса алгебры старших классов мы уже знаем, что производная - это предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел существует.

Действие нахождения производной называется её дифференцированием, а функцию, имеющую производную в точке х, называют дифференцируемой в этой точке. Функция, дифференцируемая в каждой точке промежутка, называется дифференцируемой в этом промежутке.

Честь открытия основных законов математического анализа принадлежит английскому физику и математику Исааку Ньютону и немецкому математику, физику, философу Лейбницу.

Ньютон ввел понятие производной, изучая законы механики, тем самым раскрыл её механический смысл.

Физический смысл производной: производная функции y = f (x ) в точке x 0 – это скорость изменения функции f (x ) в точке x 0 .

Лейбниц пришёл к понятию производной, решая задачу проведения касательной к производной линии, объяснив этим ее геометрический смысл.

Геометрический смысл производной состоит в том, что производная функция в точке x 0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x 0 .

Термин производная и современные обозначения y " , f " ввёл Ж.Лагранж в 1797г.

Российский математик 19 века Панфутий Львович Чебышев говорил, что «особенную важность имеют те методы науки, которые позволяют решать задачу, общую для всей практической деятельности человека, например, как располагать своими средствами для достижения наибольшей выгоды».

С такими задачами в наше время приходится иметь дело представителям самых разных специальностей:

    Инженеры технологи стараются так организовать производство, чтобы выпускалось как можно больше продукции;

    Конструкторы пытаются разработать прибор для космического корабля так, чтобы масса прибора была наименьшей;

    Экономисты стараются спланировать связи завода с источниками сырья так, чтобы транспортные расходы оказались минимальными.

При изучении любой темы у учеников возникает вопрос: «Зачем нам это надо?» Если ответ удовлетворит любопытство, то можно говорить о заинтересованности учеников. Ответ для темы «Производная» можно получить, зная, где используются производные функций.

Чтобы ответить на этот вопрос, можно перечислить некоторые дисциплины и их разделы, в которых применяются производные.

Производная в алгебре:

1. Касательная к графику функции

Касательная к графику функции f, дифференцируемой в точке x о , - это прямая, проходящая через точку (x о ; f (x о )) и имеющая угловой коэффициент f ′(x о ).

y = f (x о ) + f ′(x о ) (x – x о )

2. Поиск промежутков возрастания и убывания функции

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.


3. Поиск точек экстремума функции

Точку называют точкой максимума функции y=f(x) , если для всех x . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

4. Поиск промежутков выпуклости и вогнутости функции

График функции , является на этом интервале выпуклым , лежит не выше любой своей касательной (рис. 1).

График функции , дифференцируемой на интервале , является на этом интервале вогнутым , если график этой функции в пределах интервала лежит не ниже любой своей касательной (рис. 2).


Точкой перегиба графика функции называется точка , разделяющая промежутки выпуклости и вогнутости.

5. Поиск точек изгиба функции

Производная в физике:

1. Скорость как производная пути

2. Ускорение как производная скорости a =

3. Скорость распада радиоактивных элементов = - λN

А так же в физике производную применяют для вычисления:

Скорости материальной точки

Мгновенной скорости как физический смысл производной

Мгновенное значение силы переменного тока

Мгновенное значение ЭДС электромагнитной индукции

Максимальную мощность

Производная в химии:

И в химии нашло широкое применение дифференциальное исчисление для построения математических моделей химических реакций и последующего описания их свойств.

Производную в химии используют для определения очень важной вещи – скорости химической реакции, одного из решающих факторов, который нужно учитывать во многих областях научно-производственной деятельности . V (t) = p ‘(t)

Количество

в-ва в момент времени t 0

p = p(t 0 )

Функция

Интервал времени

t = t– t 0

Приращение аргумента

Изменение количества в-ва

p= p(t 0 + ∆ t) – p(t 0 )

Приращение функции

Средняя скорость химической реакции

p/∆t

Отношение приращёния функции к приращёнию аргумента

Производная в биологии:

Популяция – это совокупность особей данного вида, занимающих определённый участок территории внутри ареала вида, свободно скрещивающихся между собой и частично или полностью изолированных от других популяций, а также является элементарной единицей эволюции.

Р = х‘ (t)

Производная в географии:

1. Некоторые значения в сейсмографии

2. Особенности электромагнитного поля земли

3. Радиоактивность ядерно- геоифзичексих показателей

4.Многие значения в экономической географии

5.Вывести формулу для вычисления численности населения на территории в момент времени t.

у’= к у

Идея социологической модели Томаса Мальтуса состоит в том, что прирост населения пропорционально числу населения в данный момент времени t через N(t) .Модель Мальтуса неплохо действовала для описания численности населения США с 1790 по 1860 годы. Ныне эта модель в большинстве стран не действует

Производная в электротехнике:

В наших домах, на транспорте, на заводах: всюду работает электрический ток. Под электрическим током понимают направленное движение свободных электрически заряженных частиц.

Количественной характеристикой электрического тока является сила тока.

В цепи электрического тока электрический заряд меняется с течением времени по закону q=q (t). Сила тока I есть производная заряда q по времени.

В электротехнике в основном используется работа переменного тока.

Электрический ток, изменяющийся со временем, называют переменным. Цепь переменного тока может содержать различные элементы: нагревательные приборы, катушки, конденсаторы.

Получение переменного электрического тока основано на законе электромагнитной индукции, формулировка которого содержит производную магнитного потока.

Производная в экономике:

Экономика – основа жизни, а в ней важное место занимает дифференциальное исчисление – аппарат для экономического анализа. Базовая задача экономического анализа – изучение связей экономических величин в виде функций.

Производная в экономике решает важные вопросы:

1. В каком направлении изменится доход государства при увеличении налогов или при введении таможенных пошлин?

2. Увеличится или уменьшится выручка фирмы при увеличение цены на её продукцию?

Для решения этих вопросов нужно построить функции связи входящих переменных, которые затем изучаются методами дифференциального исчисления.

Также с помощью экстремума функции (производной) в экономике можно найти наивысшую производительность труда, максимальную прибыль, максимальный выпуск и минимальные издержки.

ВЫВОД: производная успешно применяется при решении различных прикладных задач в науке, технике и жизни

Как видно из вышеперечисленного применение производной функции весьма многообразно и не только при изучении математики, но и других дисциплин. Поэтому можно сделать вывод, что изучение темы: «Производная функции» будет иметь своё применение в других темах и предметах.

Мы убедились в важности изучения темы "Производная", ее роли в исследовании процессов науки и техники, в возможности конструирования по реальным событиям математические модели, и решать важные задачи.

Музыка может возвышать или умиротворять душу,
Живопись – радовать глаз,
Поэзия – пробуждать чувства,
Философия – удовлетворять потребности разума,
Инженерное дело – совершенствовать материальную сторону жизни людей,
А
математика способна достичь всех этих целей”.

Так сказал американский математик Морис Клайн.

Список используемой литературы:

1. Богомолов Н.В., Самойленко И.И. Математика. - М.: Юрайт, 2015.

2. Григорьев В.П., Дубинский Ю.А, Элементы высшей математики. - М.: Академия, 2014.

3. Баврин И.И. Основы высшей математики. - М.: Высшая школа, 2013.

4. Богомолов Н.В. Практические занятия по математике. - М.: Высшая школа, 2013.

5. Богомолов Н.В. Сборник задач по математике. - М.: Дрофа, 2013.

6. Рыбников К.А. История математики, «Издательство Московского университета», М, 1960.

7. Виноградов Ю.Н., Гомола А.И., Потапов В.И., Соколова Е.В. – М.: Издательский центр «Академия», 2010

8 . Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия. – М.: Издательский центр «Академия», 2016

Периодические источники:

Газеты и журналы: «Математика», «Открытый урок»

Использование ресурсов сети Интернет, электронных библиотек:

www:egetutor.ru

matematika-na5.norod.ru

Южно-Сахалинский Государственный Университет

Кафедра математики

Курсовая работа

Тема: Практическое применение производной

Преподаватель: Лихачева О. Н.

Южно-Сахалинск

2002г
Введение

В данной работе я рассмотрю применения производной в различных науках и отраслях. Работа разбита на главы, в каждой из которых рассматривается одна из сторон дифференциального исчисления (геометрический, физический смысл и т. д.)

1. Понятие производной

1-1. Исторические сведения

Дифференциальное исчисление было создано Ньютоном и Лейбницем в конце 17 столетия на основе двух задач:

1) о разыскании касательной к произвольной линии

2) о разыскании скорости при произвольном законе движения

Еще раньше понятие производной встречалось в работах итальянского математика Тартальи (около 1500 - 1557 гг.) - здесь появилась касательная в ходе изучения вопроса об угле наклона орудия, при котором обеспечивается наибольшая дальность полета снаряда.

В 17 веке на основе учения Г.Галилея о движении активно развивалась кинематическая концепция производной. Различные изложения стали встречаться в работах у Декарта, французского математика Роберваля, английского ученого Л. Грегори. Большой вклад в изучение дифференциального исчисления внесли Лопиталь, Бернулли, Лагранж, Эйлер, Гаусс.

1-2. Понятие производной

Пусть y = f(x) есть непрерывная функция аргумента x, определенная в промежутке (a; b), и пусть х 0 - произвольная точка этого промежутка

Дадим аргументу x приращение ∆x, тогда функция y = f(x) получит приращение ∆y = f(x + ∆x) - f(x). Предел, к которому стремится отношение ∆y / ∆x при ∆x → 0, называется производной от функции f(x).

1-3. Правила дифференцирования и таблица производных

(sin x)" = cos x

(1 / x)" = -1 / x 2

(cos x)" = -sin x

(√x)" = 1 / 2√x

(tg x)" = 1 / cos 2 x

(uv)" = u"v + uv"

(a x)" = a x ln x

(ctg x)" = 1 / sin 2 x

(u / v)"=(u"v - uv") / v 2

(arcsin x)" = 1 / √ (1- x 2)

(log a x)" = (log a e) / x

(arccos x)" = -1 / √ (1- x 2)

(ln x)" = 1 / x

(arctg x)" = 1 / √ (1+ x 2)



(arcctg x)" = -1 / √ (1+ x 2)


2. Геометрический смысл производной

2-1. Касательная к кривой

Пусть имеем кривую и на ней фиксированную точку M и точку N. Касательной к точке M называется прямая, положение которой стремится занять хорда MN, если точку N неограниченно приближать по кривой к M.

Рассмотрим функцию f(x) и соответствующую этой функции кривую y = f(x). При некотором значении x функция имеет значение y = f(x). Этим значениям на кривой соответствует точка M(x 0 , y 0). Введем новый аргумент x 0 + ∆x, его значению соответствует значение функции y 0 + ∆y = f(x 0 + ∆x). Соответствующая точка - N(x 0 + ∆x, y 0 + ∆y). Проведем секущую MN и обозначим φ угол, образованный секущей с положительным направлением оси Ox. Из рисунка видно, что ∆y / ∆x = tg φ. Если теперь ∆x будет приближаться к 0, то точка N будет перемещаться вдоль кривой, секущая MN - поворачиваться вокруг точки M, а угол φ - меняться. Если при ∆x → 0 угол φ стремится к некоторому α, то прямая, проходящая через M и составляющая с положительным направлением оси абсцисс угол α, будет искомой касательной. При этом, ее угловой коэффициент:

То есть, значение производной f "(x) при данном значении аргумента x равно тангенсу угла, образованного с положительным направлением оси Ox касательной к графику функции f(x) в точке M(x, f(x)).

Касательная к пространственной линии имеет определение, аналогичное определению касательной к плоской кривой. В этом случае, если функция задана уравнением z = f(x, y), угловые коэффициенты при осях OX и OY будут равны частным производным f по x и y.

2-2. Касательная плоскость к поверхности

Касательной плоскостью к поверхности в точке M называется плоскость, содержащая касательные ко всем пространственным кривым поверхности, проходящим через M - точку касания.

Возьмем поверхность, заданную уравнением F(x, y, z) = 0 и какую-либо обыкновенную точку M(x 0 , y 0 , z 0) на ней. Рассмотрим на поверхности некоторую кривую L, проходящую через M. Пусть кривая задана уравнениями

x = φ(t); y = ψ(t); z = χ(t).

Подставим в уравнение поверхности эти выражения. Уравнение превратится в тождество, т. к. кривая целиком лежит на поверхности. Используя свойство инвариантности формы дифференциала, продифференцируем полученное уравнение по t:

Уравнения касательной к кривой L в точке M имеют вид:

Т. к. разности x - x 0 , y - y 0 , z - z 0 пропорциональны соответствующим дифференциалам, то окончательное уравнение плоскости выглядит так:

F" x (x - x 0) + F" y (y - y 0) + F" z (z - z 0)=0

и для частного случая z = f(x, y):

Z - z 0 = F" x (x - x 0) + F" y (y - y 0)

Пример: Найти уравнение касательной плоскости в точке (2a; a; 1,5a) гиперболического параболоида

Решение :

Z" x = x / a = 2; Z" y = -y / a = -1

Уравнение искомой плоскости:

Z - 1.5a = 2(x - 2a) - (Y - a) или Z = 2x - y - 1.5a

3-1. Скорость материальной точки

Пусть зависимость пути s от времени t в данном прямолинейном движении материальной точки выражается уравнением s = f(t) и t 0 -некоторый момент времени. Рассмотрим другой момент времени t, обозначим ∆t = t - t 0 и вычислим приращение пути: ∆s = f(t 0 + ∆t) - f(t 0). Отношение ∆s / ∆t называют средней скоростью движения за время ∆t, протекшее от исходного момента t 0 . Скоростью называют предел этого отношения при ∆t → 0.

Среднее ускорение неравномерного движения в интервале (t; t + ∆t) - это величина =∆v / ∆t. Мгновенным ускорением материальной точки в момент времени t будет предел среднего ускорения:

То есть первая производная по времени (v"(t)).

Пример: Зависимость пройденного телом пути от времени задается уравнением s = A + Bt + Ct 2 +Dt 3 (C = 0,1 м/с, D = 0,03 м/с 2). Определить время после начала движения, через которое ускорение тела будет равно 2 м/с 2 .

Решение :

v(t) = s"(t) = B + 2Ct + 3Dt 2 ; a(t) = v"(t) = 2C + 6Dt = 0,2 + 0,18t = 2;

1,8 = 0,18t; t = 10 c

3-2. Теплоемкость вещества при данной температуре

Для повышения различных температур T на одно и то же значение, равное T 1 - T, на 1 кг. данного вещества необходимо разное количество теплоты Q 1 - Q, причем отношение

для данного вещества не является постоянным. Таким образом, для данного вещества количество теплоты Q есть нелинейная функция температуры T: Q = f(T). Тогда ΔQ = f(t + ΔT) - f(T). Отношение

называется средней теплоемкостью на отрезке , а предел этого выражения при ∆T → 0 называется теплоемкостью данного вещества при температуре T.

3-3. Мощность

Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы количественно характеризовать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы. Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности:.

4. Дифференциальное исчисление в экономике

4-1. Исследование функций

Дифференциальное исчисление - широко применяемый для экономического анализа математический аппарат. Базовой задачей экономического анализа является изучение связей экономических величин, записанных в виде функций. В каком направлении изменится доход государства при увеличении налогов или при введении импортных пошлин? Увеличится или уменьшится выручка фирмы при повышении цены на ее продукцию? В какой пропорции дополнительное оборудование может заменить выбывающих работников? Для решения подобных задач должны быть построены функции связи входящих в них переменных, которые затем изучаются с помощью методов дифференциального исчисления. В экономике очень часто требуется найти наилучшее или оптимальное значение показателя: наивысшую производительность труда, максимальную прибыль, максимальный выпуск, минимальные издержки и т. д. Каждый показатель представляет собой функцию от одного или нескольких аргументов. Таким образом, нахождение оптимального значения показателя сводится к нахождению экстремума функции.

По теореме Ферма, если точка является экстремумом функции, то производная в ней либо не существует, либо равна 0. Тип экстремума можно определить по одному из достаточных условий экстремума:

1) Пусть функция f(x) дифференцируема в некоторой окрестности точки x 0 . Если производная f "(x) при переходе через точку x 0 меняет знак с + на -, то x 0 - точка максимума, если с - на +, то x 0 - точка минимума, если не меняет знак, то в этой точке нет экстремума.

2) Пусть функция f(x) дважды дифференцируема в некоторой окрестности точки x 0 , причем f "(x 0) = 0, f ""(x 0) ≠ 0, то в точке x 0 функция f(x 0) имеет максимум, если f ""(x 0) < 0 и минимум, если f ""(x 0) > 0.

Кроме того, вторая производная характеризует выпуклость функции (график функции называется выпуклым вверх [вниз] на интервале (a, b), если он на этом интервале расположен не выше [не ниже] любой своей касательной).

Пример: выбрать оптимальный объем производства фирмой, функция прибыли которой может быть смоделирована зависимостью:

π(q) = R(q) - C(q) = q 2 - 8q + 10

Решение:

π"(q) = R"(q) - C"(q) = 2q - 8 = 0 → q extr = 4

При q < q extr = 4 → π"(q) < 0 и прибыль убывает

При q > q extr = 4 → π"(q) > 0 и прибыль возрастает

При q = 4 прибыль принимает минимальное значение.

Каким же будет оптимальный объем выпуска для фирмы? Если фирма не может производить за рассматриваемый период больше 8 единиц продукции (p(q = 8) = p(q = 0) = 10), то оптимальным решением будет вообще ничего не производить, а получать доход от сдачи в аренду помещений и / или оборудования. Если же фирма способна производить больше 8 единиц, то оптимальным для фирмы будет выпуск на пределе своих производственных мощностей.

4-2. Эластичность спроса

Эластичностью функции f(x) в точке x 0 называют предел

Спрос - это количество товара, востребованное покупателем. Ценовая эластичность спроса E D - это величина, характеризующая то, как спрос реагирует на изменение цены. Если │E D │>1, то спрос называется эластичным, если │E D │<1, то неэластичным. В случае E D =0 спрос называется совершенно неэластичным, т. е. изменение цены не приводит ни к какому изменению спроса. Напротив, если самое малое снижение цены побуждает покупателя увеличить покупки от 0 до предела своих возможностей, говорят, что спрос является совершенно эластичным. В зависимости от текущей эластичности спроса, предприниматель принимает решения о снижении или повышении цен на продукцию.

4-3. Предельный анализ

Важный раздел методов дифференциального исчисления, используемых в экономике - методы предельного анализа, т. е. совокупность приемов исследования изменяющихся величин затрат или результатов при изменениях объемов производства, потребления и т. п. на основе анализа их предельных значений. Предельный показатель (показатели) функции - это ее производная (в случае функции одной переменной) или частные производные (в случае функции нескольких переменных)

В экономике часто используются средние величины: средняя производительность труда, средние издержки, средний доход, средняя прибыль и т. д. Но часто требуется узнать, на какую величину вырастет результат, если будут увеличены затраты или наоборот, насколько уменьшится результат, если затраты сократятся. С помощью средних величин ответ на этот вопрос получить невозможно. В подобных задачах требуется определить предел отношения приростов результата и затрат, т. е. найти предельный эффект. Следовательно, для их решения необходимо применение методов дифференциального исчисление.

5. Производная в приближенных вычислениях

5-1. Интерполяция

Интерполяцией называется приближенное вычисление значений функции по нескольким данным ее значениям. Интерполяция широко используется в картографии, геологии, экономике и других науках. Самым простым вариантом интерполяции является форма Лагранжа, но когда узловых точек много и интервалы между ними велики, либо требуется получить функцию, кривизна которой минимальна то прибегают к сплайн-интерполяции, дающей бóльшую точность.

Пусть K n - система узловых точек a = x 0 < x 1 <…< x n = b. Функция S k (x) называется сплайн-функцией S k (x) степени k≥0 на K n , если

а) S k (x) є C k -1 ()

б) S k (x) - многочлен степени не большей k

Сплайн-функция Ŝ k (x) є S k (K n) называется интерполирующей сплайн-функцией, если Ŝ k (x j) = f(x j) для j = 0,1,…,n

В приложениях часто бывает достаточно выбрать k=3 и применить т. н. кубическую интерполяцию.

Т. к. s(x) на каждом частичном интервале есть многочлен третьей степени, то для x є

Здесь s 2 j , c j 1 , c j 0 неизвестны для j = 1, 2, …, n

Последние исключаются в силу требования s(x j) = y j:

Дифференцируя эту функцию и учитывая, что s"(x) на всем интервале и, следовательно, в частности, в узлах должна быть непрерывна, окончательно получаем систему уравнений:

относительно n+1 неизвестных s 2 0 , s 2 1 ,…, s 2 n. Для однозначного их определения в зависимости от задачи добавляются еще два уравнения:

Нормальный случай(N):

Периодический случай(P) (т. е. f(x+(x n - x 0))= f(x)):

Заданное сглаживание на границах:

Пример: сплайн-интерполяция функции f(x)=sin x, n=4.

Функция периодическая, поэтому используем случай P.





Сплайн-функция получается такая:

5-2. Формула Тейлора

Разложение функций в бесконечные ряды позволяет получить значение функции в данной точке с любой точностью. Этот прием широко используется в программировании и других дисциплинах

Говорят, что функция разлагается на данном промежутке в степенной ряд, если существует такой степенной ряд a 0 + a 1 (x - a) + a 2 (x - a) 2 + … + a n (x - a) n + …, который на этом промежутке сходится к данной функции. Можно доказать, что это разложение единственно:

Пусть функция f(x) бесконечно дифференцируема в точке a. Степенной ряд вида

называется рядом Тейлора для функции f(x), записанным по степеням разности (x - a). Вообще, чтобы ряд Тейлора сходился к f(x) необходимо и достаточно, чтобы остаточный член ряда стремился к 0. При a = 0 ряд Тейлора обычно называют рядом Маклорена.

И. М. Уваренков,

М. З. Маллер

Курс математического анализа,т.1

В. А. Дударенко,

А.А. Дадаян

Математический анализ

Дифференциальное и интегральное исчисления

Т. И. Трофимова

Курс физики

О. О. Замков

А. В. Толстопятенко

Ю. Н. Черемных

Математические методы в экономике

А. С. Солодовников

В. А. Бабайцев

А. В. Браилов

И.Г. Шандра

Математика в экономике



Введение

1. Понятие производной

1-1. Исторические сведения

1-2. Понятие производной

1-3. Правила дифференцирования и таблица производных

2. Геометрический смысл производной

2-1. Касательная к кривой

2-2. Касательная плоскость к поверхности

3. Использование производной в физике

3-1. Скорость материальной точки

3-2. Теплоемкость при данной температуре

3-3. Мощность

4. Дифференциальное исчисление в экономике

4-1. Исследование функций

4-2. Эластичность спроса

4-3. Предельный анализ

5. Производная в приближенных вычислениях

5-1. Интерполяция

5-2. Формула Тейлора

5-3. Приближенные вычисления

Заключение

Список использованной литературы

Роль математики в различных областях естествознания очень велика. Недаром говорят «Математика – царица наук, физика ее правая рука, химия – левая».

Предмет исследования – производная.

Ведущая цель - показать значимость производной не только в математике, но и в других науках, её важность в современной жизни.

Скачать:


Предварительный просмотр:

Министерство образования Саратовской области

Государственное автономное профессиональное образовательное учреждение Саратовской области «Энгельсский политехникум»

ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ В РАЗНИЧНЫХ ОБЛАСТЯХ НАУКИ

Выполнила: Вербицкая Елена Вячеславовна

Преподаватель математики ГАПОУ СО

«Энгельсский политехникум»

2016

Введение

Роль математики в различных областях естествознания очень велика. Недаром говорят «Математика – царица наук, физика ее правая рука, химия – левая».

Предмет исследования – производная.

Ведущая цель - показать значимость производной не только в математике, но и в других науках, её важность в современной жизни.

Дифференциальное исчисление – это описание окружающего нас мира, выполненное на математическом языке. Производная помогает нам успешно решать не только математические задачи, но и задачи практического характера в разных областях науки и техники.

Производная функции используется всюду, где есть неравномерное протекание процесса: это и неравномерное механическое движение, и переменный ток, и химические реакции и радиоактивный распад вещества и т.д.

Ключевой и тематический вопросы данного реферата:

1. История возникновения производной.

2. Зачем изучать производные функций?

3. Где используются производные?

4. Применение производных в физике, химии, биологии и других науках.

5. Выводы

Я решила написать работу на тему «Применение производной в различных областях науки», потому что считаю эту тему очень интересной, полезной и актуальной.

В своей работе я расскажу о применении дифференцирования в различных областях науки, таких как химия, физика, биология, география и т. д. Ведь все науки неразрывно связаны между собой, что очень хорошо видно на примере рассматриваемой мною темы.

Применение производной в различных областях науки

Из курса алгебры старших классов мы уже знаем, что производная - это предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел существует.

Действие нахождения производной называется её дифференцированием, а функцию, имеющую производную в точке х, называют дифференцируемой в этой точке. Функция, дифференцируемая в каждой точке промежутка, называется дифференцируемой в этом промежутке.

Честь открытия основных законов математического анализа принадлежит английскому физику и математику Исааку Ньютону и немецкому математику, физику, философу Лейбницу.

Ньютон ввел понятие производной, изучая законы механики, тем самым раскрыл её механический смысл.

Физический смысл производной: производная функции y=f(x) в точке x 0 – это скорость изменения функции f(x) в точке x 0 .

Лейбниц пришёл к понятию производной, решая задачу проведения касательной к производной линии, объяснив этим ее геометрический смысл.

Геометрический смысл производной состоит в том, что производная функция в точке x 0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x 0 .

Термин производная и современные обозначения y" , f " ввёл Ж.Лагранж в 1797г.

Российский математик 19 века Панфутий Львович Чебышев говорил, что «особенную важность имеют те методы науки, которые позволяют решать задачу, общую для всей практической деятельности человека, например, как располагать своими средствами для достижения наибольшей выгоды».

С такими задачами в наше время приходится иметь дело представителям самых разных специальностей:

  • Инженеры технологи стараются так организовать производство, чтобы выпускалось как можно больше продукции;
  • Конструкторы пытаются разработать прибор для космического корабля так, чтобы масса прибора была наименьшей;
  • Экономисты стараются спланировать связи завода с источниками сырья так, чтобы транспортные расходы оказались минимальными.

При изучении любой темы у учеников возникает вопрос: «Зачем нам это надо?» Если ответ удовлетворит любопытство, то можно говорить о заинтересованности учеников. Ответ для темы «Производная» можно получить, зная, где используются производные функций.

Чтобы ответить на этот вопрос, можно перечислить некоторые дисциплины и их разделы, в которых применяются производные.

Производная в алгебре:

1. Касательная к графику функции

Касательная к графику функции f, дифференцируемой в точке x о , - это прямая, проходящая через точку (x о ; f (x о )) и имеющая угловой коэффициент f ′(x о ).

Y = f (x о ) + f ′(x о ) (x – x о )

2. Поиск промежутков возрастания и убывания функции

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.

3. Поиск точек экстремума функции

Точку называют точкой максимума функции y=f(x) , если для всех x . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

4. Поиск промежутков выпуклости и вогнутости функции

График функции , является на этом интервале выпуклым , лежит не выше любой своей касательной (рис. 1).

График функции , дифференцируемой на интервале , является на этом интервале вогнутым , если график этой функции в пределах интервала лежит не ниже любой своей касательной (рис. 2).

Точкой перегиба графика функции называется точка , разделяющая промежутки выпуклости и вогнутости.

5. Поиск точек изгиба функции

Производная в физике:

1. Скорость как производная пути

2. Ускорение как производная скорости a =

3. Скорость распада радиоактивных элементов = - λN

А так же в физике производную применяют для вычисления:

Скорости материальной точки

Мгновенной скорости как физический смысл производной

– мгновенная скорость, м/с
– перемещение тела, м (если Δt→0)
Δt – стремящийся к нулю интервал времени, с

Δt

Мгновенное значение силы переменного тока

Мгновенное значение ЭДС электромагнитной индукции

Максимальную мощность

Производная в химии:

И в химии нашло широкое применение дифференциальное исчисление для построения математических моделей химических реакций и последующего описания их свойств.

Производную в химии используют для определения очень важной вещи – скорости химической реакции, одного из решающих факторов, который нужно учитывать во многих областях научно-производственной деятельности. V (t) = p ‘(t)

Понятие на языке химии

Обозначение

Понятие на языке математики

Количество

в-ва в момент времени t0

p = p(t 0)

Функция

Интервал времени

∆t = t– t0

Приращение аргумента

Изменение количества в-ва

∆p= p(t0+ ∆ t) – p(t0)

Приращение функции

Средняя скорость химической реакции

∆p/∆t

Отношение приращёния функции к приращёнию аргумента

Производная в биологии:

Популяция – это совокупность особей данного вида, занимающих определённый участок территории внутри ареала вида, свободно скрещивающихся между собой и частично или полностью изолированных от других популяций, а также является элементарной единицей эволюции.

Р = х‘ (t)

Производная в географии:

1. Некоторые значения в сейсмографии

2. Особенности электромагнитного поля земли

3. Радиоактивность ядерно- геоифзичексих показателей

4.Многие значения в экономической географии

5.Вывести формулу для вычисления численности населения на территории в момент времени t.

у’= к у

Идея социологической модели Томаса Мальтуса состоит в том, что прирост населения пропорционально числу населения в данный момент времени t через N(t) .Модель Мальтуса неплохо действовала для описания численности населения США с 1790 по 1860 годы. Ныне эта модель в большинстве стран не действует

Производная в электротехнике:

В наших домах, на транспорте, на заводах: всюду работает электрический ток. Под электрическим током понимают направленное движение свободных электрически заряженных частиц.

Количественной характеристикой электрического тока является сила тока.

В цепи электрического тока электрический заряд меняется с течением времени по закону q=q (t). Сила тока I есть производная заряда q по времени.

В электротехнике в основном используется работа переменного тока.

Электрический ток, изменяющийся со временем, называют переменным. Цепь переменного тока может содержать различные элементы: нагревательные приборы, катушки, конденсаторы.

Получение переменного электрического тока основано на законе электромагнитной индукции, формулировка которого содержит производную магнитного потока.

Производная в экономике:

Экономика – основа жизни, а в ней важное место занимает дифференциальное исчисление – аппарат для экономического анализа. Базовая задача экономического анализа – изучение связей экономических величин в виде функций.

Производная в экономике решает важные вопросы:

1. В каком направлении изменится доход государства при увеличении налогов или при введении таможенных пошлин?

2. Увеличится или уменьшится выручка фирмы при увеличение цены на её продукцию?

Для решения этих вопросов нужно построить функции связи входящих переменных, которые затем изучаются методами дифференциального исчисления.

Также с помощью экстремума функции (производной) в экономике можно найти наивысшую производительность труда, максимальную прибыль, максимальный выпуск и минимальные издержки.

ВЫВОД: производная успешно применяется при решении различных прикладных задач в науке, технике и жизни

Как видно из вышеперечисленного применение производной функции весьма многообразно и не только при изучении математики, но и других дисциплин. Поэтому можно сделать вывод, что изучение темы: «Производная функции» будет иметь своё применение в других темах и предметах.

Мы убедились в важности изучения темы "Производная", ее роли в исследовании процессов науки и техники, в возможности конструирования по реальным событиям математические модели, и решать важные задачи.

“Музыка может возвышать или умиротворять душу,
Живопись – радовать глаз,
Поэзия – пробуждать чувства,
Философия – удовлетворять потребности разума,
Инженерное дело – совершенствовать материальную сторону жизни людей,
А математика способна достичь всех этих целей”.

Так сказал американский математик Морис Клайн.

Список используемой литературы:

1. Богомолов Н.В., Самойленко И.И. Математика. - М.: Юрайт, 2015.

2. Григорьев В.П., Дубинский Ю.А, Элементы высшей математики. - М.: Академия, 2014.

3. Баврин И.И. Основы высшей математики. - М.: Высшая школа, 2013.

4. Богомолов Н.В. Практические занятия по математике. - М.: Высшая школа, 2013.

5. Богомолов Н.В. Сборник задач по математике. - М.: Дрофа, 2013.

6. Рыбников К.А. История математики, «Издательство Московского университета», М, 1960.

7. Виноградов Ю.Н., Гомола А.И., Потапов В.И., Соколова Е.В. – М.: Издательский центр «Академия», 2010

8. Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия. – М.: Издательский центр «Академия», 2016

Периодические источники:

Газеты и журналы: «Математика», «Открытый урок»

Использование ресурсов сети Интернет, электронных библиотек:

www:egetutor.ru

matematika-na5.norod.ru


Задача. Функция издержек имеет вид , а доход при производстве х единиц товара определяется следующим образом:

Определить оптимальное для производителя значение выпуска х0.

Решение:

Прибыль Р(х) = D (x ) - С(х), где D (x ) - доход от производства х единиц продукта.

Функция прибыли имеет вид:

Найдем производную функции прибыли:

Очевидно, Р"(х)> 0 при х < 100, так что наибольшее значение прибыли на отрезке есть Р (100) = 399 900. Найдем теперь наибольшее значение прибыли на интервале (100; + ∞). Имеется одна критическая точка х= 200. При этом Р"(х) > 0 при 100 < x < 200 и Р " (х) < 0 при x > 200, т. е. х= 200- максимальное значение Р(х) на интервале (100; + ∞).

Р (200) = 419 900 > Р (100), таким образом, x опт = 200 (ед.).

Задача. Цементный завод производит Х т. цемента в день. По договору он должен ежедневно поставлять строительной фирме не менее 20 т. цемента. Производственные мощности завода таковы, что выпуск цемента не может превышать 90 т. в день.

Определить, при каком объеме производства удельные затраты будут наибольшими (наименьшими), если функция затрат имеет вид:

К=-х3+98х2+200х . Удельные затраты составят К/х=-х2+98х+200

Решение:

Задача сводится к отысканию наибольшего и наименьшего значения функции

у= - х2+98х+200 . На промежутке .

DIV_ADBLOCK1021">

6 Применение производной в медицине

Применение дифференциального исчисления в медицине сводится к вычислению скорости. Например, скорости восстановительных реакций и скорости релаксационного процесса.

Реакция организма на введенное лекарство может выражаться в повышении кровяного давления, изменении температуры тела, изменении пульса или других физиологических показателей. Степень реакции зависит от назначенного лекарства, его дозы. С помощью производной можно вычислить, при какой дозе лекарства реакция организма максимальна. С помощью второй производной можно определить условия, при которых скорость процесса наиболее чувствительна к каким-либо воздействиям

Задача Предположим, что х обозначает дозу назначенного лекарства, у - функция степени реакции. у=f(x)=x²(a-x), где а - некоторая положительная постоянная. При каком значении х реакция максимальна?

Решение:

https://pandia.ru/text/80/244/images/image137_6.gif" width="116" height="24">. Тогда при ..gif" width="49" height="42"> - тот уровень дозы, который дает максимальную реакцию.

Точки перегиба важны в биохимии , так как они определяют условия, при которых некоторая величина, например скорость процесса, наиболее (или наименее) чувствительна к каким-либо воздействиям.

Задача. В результате значительной потери крови содержание железа в крови уменьшилось на 210 мг. Недостаток железа вследствие его восстановления с течением времени t уменьшается по закону мг(t – сутки). Найти зависимость скорости восстановления железа в крови от времени. Вычислить эту скорость в момент t =0 и через 7 суток.

Решение:

Скорость восстановления железа:

https://pandia.ru/text/80/244/images/image144_5.gif" width="33" height="18"> скорость восстановления равна 30 мг/сутки. Через 7 суток скорость восстановления равна 11,1 мг/сут:

Релаксационный процесс – это процесс возвращения системы к состоянию устойчивого равновесия, из которого она была выведена. Во многих случаях (особенно при однократном воздействии) этот процесс описывается экспоненциальным уравнением https://pandia.ru/text/80/244/images/image147_6.gif" width="13" height="15 src="> – постоянная времени. Ее физический смысл: - это время, в течение которого начальное отклонение Научно-исследовательская деятельность" href="/text/category/nauchno_issledovatelmzskaya_deyatelmznostmz/" rel="bookmark">научно-производственной деятельности . Например, инженерам-технологам при определении эффективности химических производств, химикам, разрабатывающим препараты для медицины и сельского хозяйства , а также врачам и агрономам, использующим эти препараты для лечения людей и для внесения их в почву. Одни реакции проходят практически мгновенно, другие идут очень медленно. В реальной жизни для решения производственных задач, в медицинской, сельскохозяйственной и химической промышленности важно знать скорости реакций химических веществ.

Пусть дана функция m=m(t), где m -количество некоторого вещества, вступившего в химическую реакцию в момент времени t . Приращению времени Δt будет соответствовать приращение Δm величины m . Отношение Δm/Δt - есть средняя скорость химической реакции за промежуток времени Δt . Предел этого отношения при стремлении Δt к нулю - есть скорость химической реакции в данный момент времени.


Задача. Зависимость между массой х вещества, получаемого в результате некоторой химической реакции и временем t выражается уравнением https://pandia.ru/text/80/244/images/image151_5.gif" width="283" height="30 src=">

Задача. Концентрация раствора изменяется с течением времени по закону: . Найти скорость растворения.

Решение:

Скорость растворение вычислим с помощью производной:

https://pandia.ru/text/80/244/images/image154_4.gif" width="139" height="42 src=">. Получите формулу для скорости роста численности популяции.

Решение:

Задача. Зависимость суточного удоя y в литрах от возраста коров х в годах определяется уравнением , где х>2 . Найдите возраст дойных коров, при котором суточный удой будет наибольшим.

Решение:

https://pandia.ru/text/80/244/images/image161_4.gif" width="77" height="23 src=">

(лет)- точка максимума, возраст дойных коров, при котором суточный удой будет наибольшим.

Заключение

В данной работе рассмотрено одно из важнейших понятий математического анализа - производная функции с точки зрения её практического применения. С помощью производной можно решать самые разнообразные задачи, относящиеся к любой области человеческой деятельности. В частности, с помощью производных возможно подробное исследование функций, более точное построение их графиков, решение уравнений и неравенств, доказательство тождеств и неравенств, нахождение наибольших и наименьших значений величин.

По всем вышеперечисленным областям применения производной подобрано и сведено в сборник около двухсот задач. Каждый раздел сборника начинается с краткого изложения теоретических основ, содержит типовые задачи с решениями и наборы упражнений для самостоятельного решения. Эти задачи расширяют кругозор и повышают интерес к производной. Они могут быть интересны и полезны студентам, увлекающимся математикой.

Литература

1. Богомолов задач по математике: учеб пособие для ссузов. – М.: Дрофа, 2005.

2. Богомолов: учеб. для ссузов / , – М.: Дрофа, 2010.

3. Богомолов. Дидактические задания: учеб. пособие для ссузов / , – М.: Дрофа, 2005.

4. Истомина: вопросы и ответы: учеб. пособие для вузов. – Ростов н/Д: Феникс, 2002.

5. Лисичкин: учеб. пособие для техникумов / , - М.:Высш. шк.,1991.

6. Никольский математического анализа: учеб. пособие для студ. ссузов.- М.: Дрофа, 2012.

7. Омельченко: учеб. пособие для ссузов. – Ростов н/Д: Феникс, 2007.

8. Филимонова: учеб. пособие для ссузов. – Ростов н/Д: Феникс, 2013.

Министерство образования Саратовской области

Государственное автономное профессиональное образовательное учреждение Саратовской области «Энгельсский политехникум»

ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ В РАЗНИЧНЫХ ОБЛАСТЯХ НАУКИ

Выполнила: Вербицкая Елена Вячеславовна

преподаватель математики ГАПОУ СО

«Энгельсский политехникум»

Введение

Роль математики в различных областях естествознания очень велика. Недаром говорят «Математика – царица наук, физика ее правая рука, химия – левая».

Предмет исследования – производная.

Ведущая цель - показать значимость производной не только в математике, но и в других науках, её важность в современной жизни.

Дифференциальное исчисление – это описание окружающего нас мира, выполненное на математическом языке. Производная помогает нам успешно решать не только математические задачи, но и задачи практического характера в разных областях науки и техники.

Производная функции используется всюду, где есть неравномерное протекание процесса: это и неравномерное механическое движение, и переменный ток, и химические реакции и радиоактивный распад вещества и т.д.

Ключевой и тематический вопросы данного реферата:

1. История возникновения производной.

2. Зачем изучать производные функций?

3. Где используются производные?

4. Применение производных в физике, химии, биологии и других науках.

Я решила написать работу на тему «Применение производной в различных областях науки», потому что считаю эту тему очень интересной, полезной и актуальной.

В своей работе я расскажу о применении дифференцирования в различных областях науки, таких как химия, физика, биология, география и т. д. Ведь все науки неразрывно связаны между собой, что очень хорошо видно на примере рассматриваемой мною темы.

Применение производной в различных областях науки

Из курса алгебры старших классов мы уже знаем, чтопроизводная - это предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел существует.

Действие нахождения производной называется её дифференцированием, а функцию, имеющую производную в точке х, называют дифференцируемой в этой точке. Функция, дифференцируемая в каждой точке промежутка, называется дифференцируемой в этом промежутке.

Честь открытия основных законов математического анализа принадлежит английскому физику и математику Исааку Ньютону и немецкому математику, физику, философу Лейбницу.

Ньютон ввел понятие производной, изучая законы механики, тем самым раскрыл её механический смысл.

Физический смысл производной: производная функции y =f (x ) в точке x 0 – это скорость изменения функции f (x ) в точке x 0 .

Лейбниц пришёл к понятию производной, решая задачу проведения касательной к производной линии, объяснив этим ее геометрический смысл.

Геометрический смысл производной состоит в том, что производная функция в точке x 0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x 0 .

Термин производная и современные обозначения y " , f " ввёл Ж.Лагранж в 1797г.

Российский математик 19 века Панфутий Львович Чебышев говорил, что «особенную важность имеют те методы науки, которые позволяют решать задачу, общую для всей практической деятельности человека, например, как располагать своими средствами для достижения наибольшей выгоды».

С такими задачами в наше время приходится иметь дело представителям самых разных специальностей:

    Инженеры технологи стараются так организовать производство, чтобы выпускалось как можно больше продукции;

    Конструкторы пытаются разработать прибор для космического корабля так, чтобы масса прибора была наименьшей;

    Экономисты стараются спланировать связи завода с источниками сырья так, чтобы транспортные расходы оказались минимальными.

При изучении любой темы у учеников возникает вопрос: «Зачем нам это надо?» Если ответ удовлетворит любопытство, то можно говорить о заинтересованности учеников. Ответ для темы «Производная» можно получить, зная, где используются производные функций.

Чтобы ответить на этот вопрос, можно перечислить некоторые дисциплины и их разделы, в которых применяются производные.

Производная в алгебре:

1. Касательная к графику функции

Касательная к графику функции f, дифференцируемой в точке x о, - это прямая, проходящая через точку (x о; f (x о)) и имеющая угловой коэффициент f ′(x о).

y = f (x о) + f ′(x о) (x – x о)

2. Поиск промежутков возрастания и убывания функции

Функция y=f(x) возрастает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Функция y=f(x) убывает на интервале X , если для любых и выполняется неравенство . Другими словами – большему значению аргумента соответствует меньшее значение функции.

3. Поиск точек экстремума функции

Точку называют точкой максимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .

Точку называют точкой минимума функции y=f(x) , если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .

Под окрестностью точки понимают интервал , где - достаточно малое положительное число.

Точки минимума и максимума называют точками экстремума , а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

4. Поиск промежутков выпуклости и вогнутости функции

выпуклым , если график этой функции в пределах интервала лежит не выше любой своей касательной (рис. 1).

График функции , дифференцируемой на интервале , является на этом интервале вогнутым , если график этой функции в пределах интервала лежит не ниже любой своей касательной (рис. 2).

Точкой перегиба графика функции называется точка , разделяющая промежутки выпуклости и вогнутости.

5. Поиск точек изгиба функции

Производная в физике:

1. Скорость как производная пути

2. Ускорение как производная скорости a =

3. Скорость распада радиоактивных элементов = - λN

А так же в физике производную применяют для вычисления:

Скорости материальной точки

Мгновенной скорости как физический смысл производной

Мгновенное значение силы переменного тока

Мгновенное значение ЭДС электромагнитной индукции

Максимальную мощность

Производная в химии:

И в химии нашло широкое применение дифференциальное исчисление для построения математических моделей химических реакций и последующего описания их свойств.

Производную в химии используют для определения очень важной вещи – скорости химической реакции, одного из решающих факторов, который нужно учитывать во многих областях научно-производственной деятельности. V (t) = p ‘(t)

Производная в биологии:

Популяция – это совокупность особей данного вида, занимающих определённый участок территории внутри ареала вида, свободно скрещивающихся между собой и частично или полностью изолированных от других популяций, а также является элементарной единицей эволюции.

Производная в географии:

1. Некоторые значения в сейсмографии

2. Особенности электромагнитного поля земли

3. Радиоактивность ядерно- геоифзичексих показателей

4.Многие значения в экономической географии

5.Вывести формулу для вычисления численности населения на территории в момент времени t.

у’= к у

Идея социологической модели Томаса Мальтуса состоит в том, что прирост населения пропорционально числу населения в данный момент времени t через N(t) .Модель Мальтуса неплохо действовала для описания численности населения США с 1790 по 1860 годы. Ныне эта модель в большинстве стран не действует

Производная в электротехнике:

В наших домах, на транспорте, на заводах: всюду работает электрический ток. Под электрическим током понимают направленное движение свободных электрически заряженных частиц.

Количественной характеристикой электрического тока является сила тока.

В цепи электрического тока электрический заряд меняется с течением времени по закону q=q (t). Сила тока I есть производная заряда q по времени.

В электротехнике в основном используется работа переменного тока.

Электрический ток, изменяющийся со временем, называют переменным. Цепь переменного тока может содержать различные элементы: нагревательные приборы, катушки, конденсаторы.

Получение переменного электрического тока основано на законе электромагнитной индукции, формулировка которого содержит производную магнитного потока.

Производная в экономике:

Экономика – основа жизни, а в ней важное место занимает дифференциальное исчисление – аппарат для экономического анализа. Базовая задача экономического анализа – изучение связей экономических величин в виде функций.

Производная в экономике решает важные вопросы:

1. В каком направлении изменится доход государства при увеличении налогов или при введении таможенных пошлин?

2. Увеличится или уменьшится выручка фирмы при увеличение цены на её продукцию?

Для решения этих вопросов нужно построить функции связи входящих переменных, которые затем изучаются методами дифференциального исчисления.

Также с помощью экстремума функции (производной) в экономике можно найти наивысшую производительность труда, максимальную прибыль, максимальный выпуск и минимальные издержки.

ВЫВОД: производная успешно применяется при решении различных прикладных задач в науке, технике и жизни

Как видно из вышеперечисленного применение производной функции весьма многообразно и не только при изучении математики, но и других дисциплин. Поэтому можно сделать вывод, что изучение темы: «Производная функции» будет иметь своё применение в других темах и предметах.

Мы убедились в важности изучения темы "Производная", ее роли в исследовании процессов науки и техники, в возможности конструирования по реальным событиям математические модели, и решать важные задачи.

“Музыка может возвышать или умиротворять душу,
Живопись – радовать глаз,
Поэзия – пробуждать чувства,
Философия – удовлетворять потребности разума,
Инженерное дело – совершенствовать материальную сторону жизни людей,
А математика способна достичь всех этих целей”.

Так сказал американский математик Морис Клайн.

Список используемой литературы:

1. Богомолов Н.В., Самойленко И.И. Математика. - М.: Юрайт, 2015.

2. Григорьев В.П., Дубинский Ю.А, Элементы высшей математики. - М.: Академия, 2014.

3. Баврин И.И. Основы высшей математики. - М.: Высшая школа, 2013.

4. Богомолов Н.В. Практические занятия по математике. - М.: Высшая школа, 2013.

5. Богомолов Н.В. Сборник задач по математике. - М.: Дрофа, 2013.

6. Рыбников К.А. История математики, «Издательство Московского университета», М, 1960.

7. Виноградов Ю.Н., Гомола А.И., Потапов В.И., Соколова Е.В. – М.: Издательский центр «Академия», 2010

8. Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия. – М.: Издательский центр «Академия», 2016

Периодические источники:

Газеты и журналы: «Математика», «Открытый урок»

Использование ресурсов сети Интернет, электронных библиотек.