Колебания в биологических объектах. Виды колебаний — Гипермаркет знаний Примеры колебаний физика

§ Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).

§ Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (т.е. чтобы зависимость от времени этой силы была синусоидальной).



Из выражения (5) непосредственно вытекает дифференциальное уравнение гармонических колебаний

(6)

(где s = A cos(ω 0 t+φ)). Решением данного дифференциального уравнения является выражение (1).

36. Волны. Уравнение бегущей волны. Волновое уравнение.

Волна́ - изменение состояния среды или физического поля (возмущение), распространяющееся либо колеблющееся в пространстве и времени или в фазовом пространстве. Другими словами, «…волнами или волной называют изменяющееся со временем пространственное чередование максимумов и минимумов любой физической величины - например, плотности вещества, напряжённости электрического поля, температуры ».

В связи с этим волновой процесс может иметь самую разную физическую природу: механическую, химическую (реакция Белоусова - Жаботинского, протекающая в автоколебательном режиме каталитического окисления различных восстановителей бромисто-водородной кислотой HBrO 3), электромагнитную (электромагнитное излучение), гравитационную (гравитационные волны), спиновую (магнон), плотности вероятности (ток вероятности) и т. д.

Многообразие волновых процессов приводит к тому, что никаких абсолютных общих свойств волн выделить не удаётся . Одним из часто встречающихся признаков волн считаетсяблизкодействие, проявляющееся во взаимосвязи возмущений в соседних точках среды или поля, однако в общем случае может отсутствовать и она .

Среди всего многообразия волн выделяют некоторые их простейшие типы, которые возникают во многих физических ситуациях из-за математического сходства описывающих их физических законов . Об этих законах говорят в таком случае как о волновых уравнениях. Для непрерывных систем это обычно дифференциальные уравнения в частных производных в фазовом пространстве системы, для сред часто сводимые к уравнениям, связывающим возмущения в соседних точках через пространственные и временные производные этих возмущений . Важным частным случаем волн являются линейные волны, для которых справедлив принцип суперпозиции.

По своему характеру волны подразделяются на [источник не указан 97 дней ] :

§ По признаку распространения в пространстве: стоячие, бегущие.

§ По характеру волны: колебательные, уединённые (солитоны).

§ По типу волн: поперечные, продольные, смешанного типа.

§ По законам, описывающим волновой процесс: линейные, нелинейные.

§ По свойствам субстанции: волны в дискретных структурах, волны в непрерывных субстанциях.

§ По геометрии: сферические (пространственные), одномерные (плоские), спиральные.

Отличие колебания от волны.

Бегущие волны, как правило, способны удаляться на значительные расстояния от места своего возникновения (по этой причине волны иногда называют «колебанием, оторвавшимся от излучателя» [источник не указан 97 дней ]).

В основном физические волны не переносят материю, но возможен вариант, где происходит волновой перенос именно материи, а не только энергии. Такие волны способны распространяться сквозь абсолютную пустоту. Примером таких волн может служить нестационарное излучение газа в вакуум, волны вероятности электрона и других частиц, волны горения, волны химической реакции, волны плотности реагентов, волны плотности транспортных потоков.

Уравнение плоской одномерной синусоидальной волны:

(Вместо синуса можно написать косинус.) Это уравнение отличается от уравнения синусоидальных колебаний тем, что колеблющая величина S зависит не только от времени, но и от координаты. Это и понятно: вместо одного маятника мы имеем множество связанных маятников - частиц среды. v - скорость распространения волны, А - амплитуда волны, аргумент синуса - фаза волны, j 0 - начальная фаза колебаний в точке х = 0, w - частота (циклическая) волны.

Расстояние, на которое распространяется волна за время, равное периоду колебаний, называется ДЛИНОЙ ВОЛНЫ l = nT.

ВОЛНОВОЕ ЧИСЛО k :

С помощью введенного волнового числа уравнение волны запишется:

Если мы рассматриваем не одномерную волну, удобно наряду с волновым числом ввести ВОЛНОВОЙ ВЕКТОР k , модуль которого равен волновому числу, а направление совпадает с направлением луча (направлением распространения волны). В векторном виде уравнение волны будет выглядеть так:

здесь r - радиус вектор точки пространства; j 0 - начальная фаза колебаний в начале координат.

Уравнение сферической волны отличается тем, что амплитуда волны убывает с расстоянием от источника:

A 0 = const по смыслу формулы есть амплитуда волны на единичном расстоянии от источника.

Уравнение волны в дифференциальной форме обычно называют волновым уравнением ; вид этого уравнения следующий:

или

Здесь DS - оператор

Уравнение синусоидальной волны является решением волнового уравнения (можно проверить подстановкой). Общее же решение волнового уравнения следующее:

Здесь А и В - произвольные константы, а f 1 и f 2 - произвольные дважды дифференцируемые функции. Первое слагаемое описывает волну, распространяющуюся слева направо, второе - встречную волну.

37. Интерференция и дифракция волн.

38. Звуковые и электромагнитные волны.

Звуковые волны.
Звук – колебательное движение частиц упругой среды, распространяющееся в виде волн (колебания плотности, давления). Не может распространяться в вакууме! Продольная волна в жидкостях и газах!
Инфразвуки (до 16 Гц) Слышимые звуки (16 – 20000Гц) Ультразвуки (более 20000 Гц) Гиперзвуки (10 9 – 10 13 Гц)
Источники Шум атмосферы, леса, моря. Гром. Взрывы, орудийные выстрелы. Сейсмические волны. Колебания твердого тела (мембраны, деки, диффузоры громкоговорителей). Колебания ограниченных объемов среды (воздух в музыкальных духовых инструментах, органах, свистках). Голосовой аппарат человека и животных. Пьезоэлектрические материалы. Магнитострикционные материалы. Некоторые животные (дельфины, летучие мыши и др.). Тепловое движение атомов. Пьезоэлектрические и магнитострикционные материалы.
Применение Определение места взрыва, выстрела. Предсказание цунами. Исследование атмосферы. Ориентация в пространстве. Общение, речь, получение информации. Дефектоскопия, медицина, эхолокация. Физика твердого тела. Получение эмульсий. Ускорение диффузии, некоторых химических реакций. Ориентация в пространстве у некоторых животных. Изучение состояния вещества. Линии задержки (цветное телевидение, ЭВМ и т.п.)
Скорость звука зависит от среды и ее состояния, как и для любой механической волны. Скорость звука при 0 0 С в воздухе 331,5 м/с, в воде – 1430 м/с, в стали – 5000 м/с.
Приемники звука.
1. Естественные: ухо. Обладает высокой чувствительностью (Dp=10 -6 Па) и избирательностью (например, дирижер улавливает звуки отдельных инструментов оркестра).
2. Искусственные: микрофон. Основная характеристика – чувствительность (зависит от частоты звука).
Характеристики звука.
1. Спектр – разложение на гармонические колебания по частотам.Восприятие звука органами слуха зависит от того, какие частоты входят в состав звуковой волны. Шум - звуки, образующие набор частот, непрерывно заполняющих некоторый интервал (сплошной спектр частот). Музыкальные (тональные) звуки – звуки, образующие линейчатый спектр частот: ча­стотыN входящие в состав музыкальных звуков, образуют ряд дискретных значений. Музыкальным звукам соответствуют периодические или почти пе­риодические колебания. Каждая синусоидальная звуковая волна называется тоном.
Высота тона зависит от частоты: чем больше частота, тем выше тон. Основным тоном сложного музыкального звука называется тон, соответ­ствующий наименьшей частоте, которая имеется в наборе частот данного звука. Тоны, соответствующие остальным частотам в составе звука, называются оберто­нами. Если частоты обертонов кратны частоте основного тона, то обертоны на­зываются гармоническими, причем основной тон с частотой N 0 называется первой гармоникой, обертон со следующей частотой 2N 0 - второй гармоникой и т. д.
Музыкальные звуки с одним и тем же основным тоном различаютсятембром, который определяется наличием обертонов - их частотами и амплитудами, характером нарастания амплитуд в начале звучания и их спадом в конце звучания.
2. Звуковое давление – давление, оказываемое звуковой волной на препятствие.
3.Интенсивность звуковой волны – энергия, переносимая звуковой волной через единицу поверхности за единицу времени ().
4. Громкость звука зависит от интенсивности звука, т. е. определяется ампли­тудой колебаний в звуковой волне. Наибольшей чувствительностью ор­ганы слуха обладают к звукам с частотами от 700 до 6000 Гц. В этом диапазоне ухо способно воспринимать звуки с интенсивностью около10 -12 -10 -11 Вт/м 2 . Порогом слышимости называется наименьшая интенсивность звуковой волны, которая может быть воспринята органами слуха. Стандартный порог слышимости принимается равным I 0 =10 -12 Вт/м 2 при частоте n=1 кГц. Порогом болевого ощущения называется наибольшая интен­сивность звуковой волны, при которой восприятие звука не вызывает болевого ощущения. Порог болевого ощущения зависит от частоты звука (на частоте 1 кГц равен 1 Вт/м 2). Мерой чувствительности органов слуха к восприятию звуковых волн дан­ной интенсивности является уровень интенсивности (громкости): . Единица измерения - децибел

Электромагни́тное излуче́ние (электромагнитные волны) - распространяющееся в пространстве возмущение (изменение состояния)электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей).

Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников - движущихся зарядов, затухая наиболее медленно с расстоянием.

Электромагнитное излучение подразделяется на

§ радиоволны (начиная со сверхдлинных),

§ инфракрасное излучение,

§ видимый свет,

§ ультрафиолетовое излучение,

§ рентгеновское излучение и жесткое (гамма-)излучение (см. ниже, см. также рисунок).

Электромагнитное излучение способно распространяться в вакууме (пространстве, свободном от вещества), но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом свое поведение).

39. Волновые свойства света.

В колебательной системе происходит периодический переход одного вида энергии в другой, когда потенциальная энергия (энергия, зависящая от положения системы) переходит в кинетическую энергию (энергию движения) и наоборот.

Наглядное представление колебательного процесса можно получить, если построить график колебаний отдельной массы в координатах t (время) и y (перемещение).

Если в колебательную систему будет поступать внешняя энергия, колебания будут нарастающими (рис. 16.6 а). Если к консервативной системе внешняя энергия не поступает, колебания будут незатухающими (рис.16.6 б). Если энергия системы уменьшается (например, за счет трения в диссипативной системе), колебания будут затухающими (рис. 16.6 в).

Важной характеристикой колебательного процесса является форма колебаний. Форма колебаний – это кривая, показывающая положение точек колебательной системы относительно положения равновесия в фиксированный момент времени. Простейшие формы колебаний можно и наблюдать. Например, хорошо видны формы колебаний провода, висящего между двумя столбами, или струны гитары.

Колебания, происходящие при отсутствии внешней нагрузки, называются свободными колебаниями . Свободные колебания диссипативной системы являются затухающими, потому что ее полная энергия убывает. Энергия консервативной системы остается постоянной, и ее свободные колебания будут незатухающими. Однако в природе консервативных систем не существует, поэтому их колебания изучаются только теоретически. Свободные колебания консервативных систем называются собственными колебаниями .

Периодические колебания – это колебания, удовлетворяющие условию y(t)=y(t+T) . Здесь T – период колебаний, т.е. время одного колебания. Периодические колебания имеют и другие важные характеристики. Например, амплитуда a – это половина размаха колебания: a=(y max – y min )/2 , круговая частота – число колебаний за 2 секунды, техническая частота f – число колебаний за одну секунду. Обе эти частоты и период взаимосвязаны:

(Гц),(рад/с).

Гармонические колебания – это колебания, изменяющиеся по закону илиЗдесь фаза колебаний , начальная фаза .

Вынужденные колебания возникают под воздействием внешних сил.

Вибрация – это вынужденные колебания, происходящие с относительно малой амплитудой и не слишком малой частотой.

4. Виды динамических нагрузок

Колебания сооружения возникают от динамических нагрузок. В отличие от статических, динамические нагрузки изменяются с течением времени по величине, направлению или положению. Они сообщают массам системы ускорения, вызывают инерционные силы, что может привести к резкому возрастанию колебаний, и в итоге – к разрушению всего сооружения или его частей.

Рассмотрим основные виды динамических нагрузок.

– это нагрузка, прикладываемая к сооружению через определенный период. Источниками периодических нагрузок являются различные машины и механизмы: электродвигатели, металлообрабатывающие станки, вентиляторы, центрифуги и др. Если их вращающиеся части не уравновешены, то они при работе вызывают гармоническую нагрузку (нагрузку, изменяющуюся по закону синуса или косинуса). Такая нагрузка называется вибрационной нагрузкой . Поршневые компрессоры и насосы, штамповочные машины, дробилки, копры и др. создают негармоническую нагрузку .

Импульсные нагрузки создаются взрывом, падающими грузами или частями силовых установок (молотов, копров и др.).

Подвижные нагрузки создаются железнодорожными составами, автомобильным транспортом и др.

Весьма опасными являются недетерминированные (случайные) нагрузки . Это – ветровые, сейсмические, взрывные нагрузки.

Колебания - это движение тела, в ходе которого оно многократно движется по одной и той же траектории и проходит при этом одни и те же точки пространства. Примерами колеблющихся объектов могут служить - маятник часов, струна скрипки или фортепиано, вибрации автомобиля.

Колебания играют важную роль во многих физических явлениях за пределами области механики. Например, напряжение и сила тока в электрических цепях могут колебаться. Биологическими примерами колебаний могут служить сердечные сокращения, артериальный пульс и производство звука голосовыми связками.

Хотя физическая природа колеблющихся систем может существенно отличаться, разнообразные типы колебаний могут быть охарактеризованы количественно сходным образом. Физическая величина, которая изменяется со временем при колебательном движении, называется смещением . Амплитуда представляет собой максимальное смещение колеблющегося объекта от положения равновесия. Полное колебание, или цикл - это движение, при котором тело, выведенное из положения равновесия на некоторую амплитуду, возвращается в это положение, отклоняется до максимального смещения в противоположную сторону и возвращается в свое первоначальное положение. Период колебания T - время, необходимое для осуществления одного полного цикла. Число колебаний за единицу времени - это частота колебаний .

Простое гармоническое колебание

В некоторых телах при их растяжении или сжатии возникают силы, противодействующие этим процессам. Эти силы прямо пропорциональны длине растяжения или сжатия. Таким свойством обладают пружины. Когда тело, подвешенное к пружине, отклоняют от положения равновесия, а потом отпускают, его движение представляет собой простое гармоническое колебание.

Рассмотрим тело массой m , подвешенное на пружине в положении равновесия. Смещая тело вниз, можно вызвать колебание тела. Если - смещение тела от положения равновесия, то в пружине возникает сила F (сила упругости), направленная в противоположную смещению сторону. В соответствии с законом Гука, сила упругости пропорциональна смещению F упр = -k·S , где k - константа, которая зависит от упругих свойств пружины. Сила является отрицательной, поскольку она стремится вернуть тело в положение равновесия.

Действуя на тело массой m, сила упругости придает ему ускорение вдоль направления смещения. Согласно закону Ньютона F = ma , где a = d 2 S/d 2 t. Для упрощения последующих рассуждений пренебрежем трением и вязкостью в колеблющейся системе. В таком случае амплитуда колебаний не будет изменяться со временем.

Если не действуют никакие внешние силы (даже сопротивление среды) на колеблющиеся тело, то колебания осуществляются с определенной частотой. Эти колебания называются свободными. Амплитуда таких колебаний остается постоянной.

Таким образом, m·d 2 S/d 2 t = -k·S (1) . Перемещая все члены равенства и деля их на m, получим уравнения d 2 S/d 2 t +(k/m) · S = 0 ,
а затем d 2 S/d 2 t +ω 0 2 · S = 0 (2), где k/m = ω 0 2

Уравнение (2) является дифференциальным уравнением простого гармонического колебания .
Решение уравнения (2) дает две функции:
S = A sin(ω 0 t + φ 0 ) (3) и S = A cos(ω 0 t + φ 0 ) (4)

Таким образом, если тело массой m осуществляет простые гармонические колебания, изменение смещения этого тела от точки равновесия во времени осуществляется по закону синуса или косинуса.

(ω 0 t + φ 0 ) - фаза колебания с начальной фазой φ 0 . Фаза является свойством колебательного движения, которое характеризует величину смещения тела в любой момент времени. Измеряется фаза в радианах.

Величина называется угловой, или круговой, частотой . Измеряется в радианах, деленных за секунду ω 0 = 2πν или ω 0 = 2 π /T (5)

График уравнения простого гармонического колебания представлен на Рис. 1 . Тело, первоначально смещенное на расстояние А - амплитуды колебания, а затем отпущенное, продолжает колеблется от -A и до A за время T - период колебания.

Рис 1.

Таким образом, в ходе простого гармонического колебания величина смещения тела изменяется во времени вдоль синусоиды или косинусоиды. Поэтому простое гармоническое колебание часто называют синусоидальным колебанием.

Простое гармоническое колебание имеет следующие основные характеристики:

A) движущееся тело попеременно находится по обе стороны от положения равновесия;
б) тело повторяет свое движение за определенный интервал времени;
c) ускорение тела всегда пропорционально смещению и направлено противоположно ему;
д) графически этот тип колебания описывает синусоида.

Затухающее колебание

Простое гармоническое колебание не может продолжаться сколь угодно долго при постоянной амплитуде. В реальных условиях через некоторое время гармонические колебания прекращаются. Такие гармонические колебания в реальных системах называются затухающим колебаниями (рис.2) . К снижению амплитуды колебаний с последующим их прекращением приводит действие внешних сил, например, трения и вязкости. Эти силы уменьшают энергию колебаний. Они называются диссипативными силами , поскольку способствуют рассеиванию потенциальной и кинетической энергии макроскопических тел в энергию теплового движения атомов и молекул тела.

Рис 2.

Величина диссипативных сил зависит от скорости тела. Если скорость ν сравнительно мала, то диссипативная сила F прямо пропорциональна этой скорости F тр = -rν = -r·dS/dt (6)

Здесь r - постоянный коэффициент, независимый от скорости или частоты колебаний. Знак минус указывает на то, что тормозящая сила направлена против вектора скорости движения.

Принимаясь во внимание действие диссипативных сил, дифференциальное уравнение гармонического затухающего колебания имеет вид: m· d 2 S/d 2 t = -kS - r·dS/dt .

Перенеся все члены равенства в одну сторону, разделив каждый член на m и заменяя k/m = ω 2 ,r/m = 2β , получим дифференциальное уравнение свободных гармонических затухающих колебаний

где β - коэффициент затухания, характеризующий затухание колебаний за единицу времени.

Решением уравнения является функция S = A 0 ·e -βt ·sin(ωt + φ 0) (8)

Уравнение (8) показывает, что амплитуда гармонического колебания уменьшается экспоненциально во времени. Частота затухающих колебаний определяется уравнением ω = √(ω 0 2 - β 2) (9)

Если колебание не может происходить вследствие большого, то система возвращается в свое положение равновесия по экспоненциальному пути без колебания.

Вынужденное колебание и резонанс

Если не сообщать колеблющейся системе внешнюю энергию, то амплитуда гармонического колебания уменьшается во времени из-за диссипативных эффектов. Периодическое действие силы может увеличить амплитуду колебаний. Теперь колебание не будет затухать со временем, поскольку потерянная энергия восполняется в течение каждого цикла действием внешней силы. Если будет достигнут баланс этих двух энергий, то амплитуда колебаний будет оставаться постоянной. Эффект зависит от соотношения частот вынуждающей силы ω и собственной частоты колебания системы ω 0 .

Если тело колеблется под действием внешней периодической силы с частотой этой внешней силы, то колебание тела называется вынужденным .

Энергия внешней силы оказывает наибольшее действие на колебания системы, если внешняя сила обладает определенной частотой. Эта частота должна быть такой же, как и частота собственных колебаний системы, которые бы эта система совершала в отсутствие внешних сил. В таком случае происходит резонанс - явление резкого возрастания амплитуды колебаний при совпадении частоты вынуждающей силы с частотой собственных колебаний системы.

Механические волны

Распространение колебаний из одного места в другое называется волновым движением, или просто волной .

Механические волны образуются вследствие простых гармонических колебаний частиц среды от их среднего положения. Вещество среды не перемещается при этом из одного места в другое. Но частицы среды, передающие друг другу энергию, необходимы для распространения механических волн.

Таким образом, механическая волна является возмущением материальной среды, которое проходит эту среду с определенной скоростью, не изменяя своей формы.

Если в воду бросить камень, от места возмущения среды побежит одиночная волна. Однако волны иногда могут быть периодическими. Например, вибрирующий камертон производит попеременные сжатия и разрежения окружающего его воздуха. Эти возмущения, воспринимаемые как звук, происходят периодически с частотой колебаний камертона.

Существуют механические волны двух видов.

(1) Поперечная волна . Этот вид волн характеризуется вибрацией частиц среды под прямым углом к направлению распространения волны. Поперечные механические волны могут возникать только в твердых веществах и на поверхности жидкостей.

В поперечной волне все частицы среды осуществляют простое гармоническое колебание возле своих средних положений. Положение максимального смещения вверх называется "пиком ", а положение максимального смещения вниз - "впадиной ". Расстояние между двумя последующими пиками или впадинами называется длиной поперечной волны λ.

(2) Продольная волна . Этот вид волн характеризуется колебаниями частиц среды вдоль направления распространения волны. Продольные волны могут распространяться в жидкостях, газах и твердых телах.

В продольной волне все частицы среды также осуществляют простое гармоническое колебание около их среднего положения. В некоторых местах частицы среды расположены ближе, а в других местах - дальше, чем в нормальном состоянии.

Места, где частицы расположены близко, называются областями сжатия , а места где они находятся далеко друг от друга - областями разрежения . Расстояние между двумя последовательными сжатиями или разрежениями называются длиной продольной волны.

Выделяют следующие характеристики волн .

(1) Амплитуда - максимальное смещение колеблющейся частицы среды от ее положения равновесия (A ).

(2) Период - время, необходимое частице для одного полного колебания (T ).

(3) Частота - количество колебаний, произведенных частицей среды, за единицу времени (ν). Между частотой волны и ее периодом существует обратная зависимость: ν = 1/T .

(4) Фаза колеблющейся частицы в любой момент определяет ее положение и направление движения в данный момент. Фаза представляет собой часть длины волны или периода времени.

(5) Скорость волны является скоростью распространения в пространстве пика волны (v).

Совокупность частиц среды, колеблющихся в одинаковой фазе, формирует фронт волны. С этой точки зрения, волны делятся на два вида.

(1) Если источник волны является точкой, из которой она распространяется во всех направлениях, то образуется сферическая волна .

(2) Если источник волны колеблющаяся плоская поверхность, то образуется плоская волна .

Смещение частиц плоской волны можно описать общим уравнением для всех типов волнового движения: S = A·sin ω · (t - x/v) (10)

Это означает, что величина смещения (S ) для каждой значения времени (t ) и расстояния от источника волны (x ) зависит от амплитуды колебания (A ), угловой частоты (ω ) и скорости волны (v).

Эффект Доплера

Эффект Доплера - изменение частоты волны, воспринимаемой наблюдателем (приемником) благодаря относительному движению источника волн и наблюдателя. Если источник волн приближается к наблюдателю, число волн, прибывающих к наблюдателю волн, каждую секунду превышает испускаемое источником волн. Если источник волн удаляется от наблюдателя, то число испускаемых волн больше, чем прибывающих к наблюдателю.

Аналогичный эффект следует в случае, если наблюдатель перемещается относительно неподвижного источника.

Примером эффекта Доплера является изменение частоты гудка поезда при его приближении и удалении от наблюдателя.

Общее уравнение для эффекта Доплера имеет вид

Здесь ν источн - частота волн, испускаемых источником, и ν приемн - частота волн, воспринятая наблюдателем. ν 0 - скорость волн в неподвижной среде, ν приемн и ν источн - скорости наблюдателя и источника волн соответственно. Верхние знаки в формуле относятся к случаю, когда источник и наблюдатель перемещаются друг к другу. Нижние знаки относятся к случаю удаления друг от друга источника и наблюдателя волн.

Изменение частоты волн вследствие эффекта Доплера называют доплеровским сдвигом частоты. Этот феномен используется для измерения скорости перемещения различных тел, включая эритроциты в кровеносных сосудах.

Смотрите задачи на тему "

Существуют разные виды колебаний в физике, характеризующиеся определенными параметрами. Рассмотрим их основные отличия, классификацию по разным факторам.

Основные определения

Под колебанием подразумевают процесс, в котором через равные промежутки времени основные характеристики движения имеют одинаковые значения.

Периодическими называют такие колебания, при которых значения основных величин повторяются через одинаковые промежутки времени (период колебаний).

Разновидности колебательных процессов

Рассмотрим основные виды колебаний, существующие в фундаментальной физике.

Свободными называют колебания, которые возникают в системе, не подвергающейся внешним переменным воздействиям после начального толчка.

В качестве примера свободных колебаний является математический маятник.

Те виды механических колебаний, которые возникают в системе под действием внешней переменной силы.

Особенности классификации

По физической природе выделяют следующие виды колебательных движений:

  • механические;
  • тепловые;
  • электромагнитные;
  • смешанные.

По варианту взаимодействия с окружающей средой

Виды колебаний по взаимодействию с окружающей средой выделяют несколько групп.

Вынужденные колебания появляются в системе при действии внешнего периодического действия. В качестве примеров такого вида колебаний можно рассмотреть движение рук, листья на деревьях.

Для вынужденных гармонических колебаний возможно появление резонанса, при котором при равных значениях частоты внешнего воздействия и осциллятора при резком возрастании амплитуды.

Собственные это колебания в системе под воздействием внутренних сил после того, когда она будет выведена из равновесного состояния. Простейшим вариантом свободных колебаний является движение груза, который подвешен на нити, либо прикреплен к пружине.

Автоколебаниями называют виды, при которых у системы есть определенный запас потенциальной энергии, идущей на совершение колебаний. Отличительной чертой их является тот факт, что амплитуда характеризуется свойствами самой системы, а не первоначальными условиями.

Для случайных колебаний внешняя нагрузка имеет случайное значение.

Основные параметры колебательных движений

Все виды колебаний имеют определенные характеристики, о которых следует упомянуть отдельно.

Амплитудой называют максимальное отклонение от положения равновесия отклонение колеблющейся величины, измеряется она в метрах.

Период является время одного полного колебания, через который повторяются характеристики системы, вычисляется в секундах.

Частота определяется количеством колебаний за единицу времени, она обратно пропорциональна периоду колебаний.

Фаза колебаний характеризует состояние системы.

Характеристика гармонических колебаний

Такие виды колебаний происходят по закону косинуса или синуса. Фурье удалось установить, что всякое периодическое колебание можно представить в виде суммы гармонических изменений путем разложения определенной функции в

В качестве примера можно рассмотреть маятник, имеющий определенный период и циклическую частоту.

Чем характеризуются такие виды колебаний? Физика считает идеализированной системой, которая состоит из материальной точки, которая подвешена на невесомой нерастяжимой нити, колеблется под воздействием силы тяжести.

Такие виды колебаний обладают определенной величиной энергии, они распространены в природе и технике.

При продолжительном колебательном движении происходит изменение координаты его центра масс, а при переменном токе меняется значение тока и напряжения в цепи.

Выделяют разные виды гармонических колебаний по физической природе: электромагнитные, механические и др.

В качестве вынужденных колебаний выступает тряска транспортного средства, которое передвигается по неровной дороге.

Основные отличия между вынужденными и свободными колебаниями

Эти виды электромагнитных колебаний отличаются по физическим характеристикам. Наличие сопротивления среды и силы трения приводят к затуханию свободных колебаний. В случае вынужденных колебаний потери энергии компенсируются ее дополнительным поступлением от внешнего источника.

Период пружинного маятника связывает массу тела и жесткость пружины. В случае математического маятника он зависит от длины нити.

При известном периоде можно вычислить собственную частоту колебательной системы.

В технике и природе существуют колебания с разными значениями частот. К примеру, маятник, который колеблется в Исаакиевском соборе в Петербурге, имеет частоту 0,05 Гц, а у атомов она составляет несколько миллионов мегагерц.

Через некоторый промежуток времени наблюдается затухание свободных колебаний. Именно поэтому в реальной практике применяют вынужденные колебания. Они востребованы в разнообразных вибрационных машинах. Вибромолот является ударно-вибрационной машиной, которая предназначается для забивки в грунт труб, свай, иных металлических конструкций.

Электромагнитные колебания

Характеристика видов колебаний предполагает анализ основных физических параметров: заряда, напряжения, силы тока. В качестве элементарной системы, которая используется для наблюдения электромагнитных колебаний, является колебательный контур. Он образуется при последовательном соединении катушки и конденсатора.

При замыкании цепи, в ней возникают свободные электромагнитные колебания, связанные с периодическими изменениями электрического заряда на конденсаторе и тока в катушке.

Свободными они являются благодаря тому, что при их совершении нет внешнего воздействия, а используется только энергия, которая запасена в самом контуре.

При отсутствии внешнего воздействия, через определенный промежуток времени, наблюдается затухание электромагнитного колебания. Причиной подобного явления будет постепенная разрядка конденсатора, а также сопротивление, которым в реальности обладает катушка.

Именно поэтому в реальном контуре происходят затухающие колебания. Уменьшение заряда на конденсаторе приводит к снижению значения энергии в сравнении с ее первоначальным показателем. Постепенно она выделится в виде тепла на соединительных проводах и катушке, конденсатор полностью разрядится, а электромагнитное колебание завершится.

Значение колебаний в науке и технике

Любые движения, которые обладают определенной степенью повторяемости, являются колебаниями. Например, математический маятник характеризуется систематическим отклонением в обе стороны от первоначального вертикального положения.

Для пружинного маятника одно полное колебание соответствует его движению вверх-вниз от начального положения.

В электрическом контуре, который обладает емкостью и индуктивностью, наблюдается повторение заряда на пластинах конденсатора. В чем причина колебательных движений? Маятник функционирует благодаря тому, что сила тяжести заставляет его возвращаться в первоначальное положение. В случае пружиной модели подобную функцию осуществляет сила упругости пружины. Проходя положение равновесия, груз имеет определенную скорость, поэтому по инерции движется мимо среднего состояния.

Электрические колебания можно объяснить разностью потенциалов, существующей между обкладками заряженного конденсатора. Даже при его полной разрядке ток не исчезает, осуществляется перезарядка.

В современной технике применяются колебания, которые существенно различаются по своей природе, степени повторяемости, характеру, а также «механизму» появления.

Механические колебания совершают струны музыкальных инструментов, морские волны, маятник. Химические колебания, связанные с изменением концентрации реагирующих веществ, учитывают при проведении различных взаимодействий.

Электромагнитные колебания позволяют создавать различные технические приспособления, например, телефон, ультразвуковые медицинские приборы.

Колебания яркости цефеид представляют особый интерес в астрофизике, их изучением занимаются ученые из разных стран.

Заключение

Все виды колебаний тесно связаны с огромным количеством технических процессов и физических явлений. Велико их практическое значение в самолетостроении, строительстве судов, возведении жилых комплексов, электротехнике, радиоэлектронике, медицине, фундаментальной науке. Примером типичного колебательного процесса в физиологии выступает движение сердечной мышцы. Механические колебания встречаются в органической и неорганической химии, метеорологии, а также во многих иных естественнонаучных областях.

Первые исследования математического маятника были проведены в семнадцатом веке, а к концу девятнадцатого столетия ученым удалось установить природу электромагнитных колебаний. Русский ученый Александр Попов, которого считают «отцом» радиосвязи, проводил свои эксперименты именно на основе теории электромагнитных колебаний, результатах исследований Томсона, Гюйгенса, Рэлея. Ему удалось найти практическое применение электромагнитным колебаниям, использовать их для передачи радиосигнала на большое расстояние.

Академик П. Н. Лебедев на протяжении многих лет проводил эксперименты, связанные с получение электромагнитных колебаний высокой частоты с помощью переменны электрических полей. Благодаря многочисленным экспериментам, связанные с различными видами колебаний, ученым удалось найти области их оптимального использования в современной науке и технике.

Лекция. 1. Колебания. Форма колебаний. Виды колебаний. Классификация. Характеристики колебательного процесса. Условия возникновения механических колебаний. Гармонические колебания.

Колеба́ния - повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электро­магнитные и др. Однако различные колебательные процессы описываются одинаковы­ми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы.

Форма колебаний может быть разной.

Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки …
времени рис.1. (В противном случае колебания называются апериодическими). Выделяют важный частный случай гармонических колебаний (рис.1).

Колебания, приближающиеся к гармоническим называются квазигармоническими.

Рис.1. Виды колебаний

Колебания различной физической природы имеют много общих закономерностей и тесно взаимосвязаны c волнами. Исследованиями этих закономерностей занимается обобщённая теория колебаний и волн. Принципиальное отличие от волн: при колебаниях не происходит переноса энергии, это, локальные, «местные» преобразования энергии.

Виды колебаний. Колебания различаютс я по природе:

механические (движение, звук, вибрация),

электромагнитные (например, колебания в колебательном контуре, объёмном резонаторе, колебания напряжённостей электрического и магнитного полей в радиоволнах, волнах видимого света и любых др. электромагнитных волнах),

электромеханические (колебания мембраны телефона, пьезокварцевого или магнитострикционного излучателя ультразвука);

химические (колебания концентрации реагирующих веществ, при так называемых периодических химических реакциях);

термодинамические (например, так называемое поющее пламя и др. тепловые автоколебания, встречающиеся в акустике, а также в некоторых типах реактивных двигателей);

колебательные процессы в космосе (большой интерес в астрофизике представляют колебания яркости звезд цефеид (пульсирующие переменные звезды сверхгиганты, изменяющие блеск с амплитудой от 0,5 до 2 звезной величины и периодом от 1 до 50 суток);

Таким образом, колебания охватывают огромную область физических явлений и технических процессов.

Классификация колебаний по характеру взаимодействия с окружающей средой :

свободные (или собственные) - это колебания в системе под действием внутренних сил, после того как система выведена из состояния равновесия (в реальных условиях свободные колебания почти всегда затухающие).

Например, колебания груза на пружине, маятника, моста, корабля на волне, струны; колебания плазмы, плотности и давления воздуха при распространении в нём упругих (акустических) волн.

Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвает затухание).

вынужденные - колебания, протекающие в системе под влиянием внешнего периодического воздействия. При вынужденных колебаниях может возникнуть явление резонанса: резкое возрастание амплитуды колебаний при совпадении собственной частоты осциллятора и частоты внешнего воздействия.

автоколебания - колебания, при которых система имеет запас потенциальной энергии, расходующейся на совершение колебаний (пример такой системы - механические часы). Характерным отличием автоколебаний от свободных колебаний является, то, что их амплитуда определяется свойствами самой системы, а не начальными условиями.

параметрические - колебания, возникающие при изменении какого-либо параметра колебательной системы в результате внешнего воздействия,

случайные - колебания, при которых внешняя или параметрическая нагрузка является случайным процессом,

связанные колебания — свободные колебания взаимно связанных систем , состоящих из взаимодействующих одиночных колебательных систем. Связанные колебания имеют сложный вид вследствие того, что колебания в одной системе влияют через связь (в общем случае диссипативную и нелинейную) на колебания в другой

колебания в структурах с распределенными параметрами (длинные линии, резонаторы),

флуктуационные , происходящие в результате теплового движения вещества.

Условия возникновения колебаний.

1. Для возникновения колебания в системе необходимо вывести её из положения равновесия. Например, для маятника сообщив ему кинетическую (удар, толчок), либо – потенциальную (отклонение тела) энергию.

2. При выведении тела из положения устойчивого равновесия возникает равнодействующая сила, направленная к положению равновесия.

С энергетической точки зрения это значит, что возникают условия для постоянного перехода (кинетической энергии в потенциальную, энергии электрического поля в энергию магнитного поля и обратно.

3. Потери энергии системы за счет перехода в другие виды энергии (часто в тепловую энергию) малы.

Характеристики колебательного процесса .

На рис.1 представлен график периодического изменения функции F(x), которое характеризуется параметрами:

Амплитуда - максимальное отклонение колеблющейся величины от некоторого усреднённого её значения для системы.

Период - наименьший промежуток времени, через который повторяются какие-либо показатели состояния системы (система совершает одно полное колебание), T (c).