Какой самый распространенный элемент во вселенной. Самое распространенное вещество во вселенной. Самый распространенный химический элемент во Вселенной

  • 4.Характерные особенности эмпирического и теоритического уровней научных исследований.
  • 6.Роль естествознания в формировании научной картины мира и его вклад в развитие культуры мышления человечества.
  • 7.Естествознание как феномен общечеловеческой культуры. Фундамен-тальные естественнонаучные направления: предмет и методы исследо-вания.
  • 8.Причины, по которым знания, накопленные древними цивилизациями Вавилона, Египта, Китая, не могут считаться научными.
  • 9.Природные и социальные катаклизмы, способствовавшие зарождению истоков научного знания в Древней Греции.
  • 10.Принципы и правила истинного познания, заложенные Фалесом Милет-ским. Поиск первоначал и концепция атомистики (Левкипп и Демокрит).
  • 12.Основы учения о движении тел по Аристотелю. Первая система мироздания Аристотеля – Птолемея.
  • 14.Причины угасания интереса к научному знанию, расцвет монотеистических религий, роль арабских и восточных народов в сохранении и развитии древнегреческих знаний
  • 15.Причины разработки критериев научного знания в Средние века. По-следующие вехи в развитии научного метода, его составляющие и его творцы
  • 20.Типы и механизмы фундаментальных взаимодействий в природе.
  • 21.Проявления фундаментальных взаимодействий в механике, термодинамике, ядерной физике, химии, космологии.
  • 22.Проявления фундаментальных взаимодействий и структурные уровни организации материи.
  • 26.Специфика законов природы в физике, химии, биологии, геологии, космологии.
  • 27.Базовые принципы, лежащие в основе картин мироздания от Аристотеля до наших дней.
  • 32.Современная реализация атомистической концепции Левкиппа – Демокрита. Поколения кварков и лептонов. Промежуточные бозоны как переносчики фундаментальных взаимодействий.
  • 34.Строение химических элементов, синтез трансурановых элементов.
  • 35.Атомно-молекулярный «конструктор» строения вещества. Различие физического и химического подходов в изучении свойств вещества.
  • 40.Основные задачи космологии. Решение вопроса о происхождении Вселенной на разных этапах развития цивилизации.
  • 41.Физические теории, послужившие основой для создания теории «горячей» Вселенной г.А. Гамова.
  • 42.Причины незначительной продолжительности во время начальных «эр» и «эпох» в истории Вселенной.
  • 43.Основные события, происходившие в эру квантовой гравитации. Проблемы «моделирования» этих процессов и явлений.
  • 44.Объяснить с энергетической точки зрения, почему Эпоха адронов предшествовала Эпохе лептонов.
  • 45.Энергии (температуры), при которых произошло отделение излучения от вещества, и Вселенная стала «прозрачной».
  • 46.Строительный материал для формирования крупномасштабной структуры Вселенной.
  • 49.Cвойства черных дыр и их обнаружения себя во Вселенной.
  • 50.Наблюдаемые факты, подтверждающие теорию «горячей» Вселенной.
  • 51.Методы определения химического состава звезд и планет. Наиболее распространенные химические элементы во Вселенной.
  • 50.Наблюдаемые факты, подтверждающие теорию «горячей» Вселенной.

    Физическая теория эволюции Вселенной, в основе которой лежит предположение о том, что до того, как в природе появились звезды, галактики и другие астрономические объекты, вещество представляло собой быстро расширяющуюся и первоначально очень горячую среду. Предположение о том, что расширение Вселенной началось с "горячего" состояния, когда вещество представляло собой смесь различных взаимодействующих между собой элементарных частиц высоких энергий, было впервые выдвинуто Г.А.Гамовым в 1946 г. В настоящее время Г.В.Т. считается общепризнанной, Двумя самыми важными наблюдательными подтверждениями этой теории является обнаружение реликтового излучения, предсказанного теорией, и объяснение наблюдаемого соотношения между относительной массой водорода и гелия в природе.

    51.Методы определения химического состава звезд и планет. Наиболее распространенные химические элементы во Вселенной.

    Несмотря на то, что с момента запуска в космос первого космического аппарата прошло уже несколько десятилетий, большинство исследуемых астрономами небесных объектов являются пока недосягаемыми. Между тем, даже о самых отдалённых планетах солнечной системы и их спутниках собрано достаточно сведений.

    Астрономам часто приходится применять для исследования небесных тел дистанционные способы. Одним из самых распространённых является спектральный анализ. При помощи него удаётся определить приблизительный химический состав атмосферы планет и даже их поверхности.

    Дело в том, что атомы различных веществ излучают энергию в определённом диапазоне волн. Измерив энергию, которая выделяется в определённом спектре, специалисты могут определить и общую их массу, а соответственно, и то вещество, которое создает излучение.

    Однако чаще всего при определении точного химического состава возникают некоторые трудности. Атомы вещества могут находиться в таких условиях, что их излучение трудно наблюдать, поэтому необходимо учитывать некоторые побочные факторы (например, температуру объекта).

    Спектральные линии помогают, дело в том, что каждый элемент имеет определенный цвет спектра и рассматривая какую нибудь планету (звезду) ну в общем объект, при помощи специальных приборов - спектрографов, мы можем увидить их испускаемый цвет или ряд цветов! Потом по табличке специальной смотрится, какому веществу эти линии принадлежат! ! Наука этим занимающаяся - спектроскопия

    Спектроскопия - раздел физики, посвященный изучению спектров электромагнитного излучения.

    Спектральный анализ - совокупность методов определения состава (например, химического) объекта, основанный на изучении свойств приходящего от него излучения (в частности, света) . Оказалось, что атомы каждого химического элемента имеют строго определенные резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектре видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и даже его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах. Различают атомный и молекулярный спектральный анализ, эмиссионный ”по спектрам испускания” и абсорбционный ”по спектрам поглощения”.

    Оптический спектральный анализ характеризуется относительной простотой выполнения, экспрессностью, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг) , необходимого для анализа на большое число элементов. Спектры эмиссии получают переведением вещества в парообразное состояние и возбуждением атомов элементов нагреванием вещества до 1000-10000°С. В качестве источников возбуждения спектров при анализе материалов, проводящих ток, применяют искру, дугу переменного тока. Пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя различных газов. Спектральный анализ - чувствительный метод и широко применяется в химии, астрофизике, металлургии, машиностроении, геологической разведке и др. Метод был предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. С его помощью гелий был открыт на Солнце ранее, чем на Земле.

    Распространённость химических элементов, мера того как распространены или редки элементы по сравнению с другими элементами в данной среде. Распространённость в различных случаях могут измерять массовой долей, мольной долей или объёмной долей. Распространённость химических элементов часто представляется кларками.

    Например, массовая доля распространённости кислорода в воде составляет около 89 %, потому что это доля массы воды, которой является кислород. Однако, мольная доля распространённости кислорода в воде только 33 %, потому что только 1 из 3 атомов в молекуле воды является атомом кислорода. Во Вселенной в целом, и в атмосферах газовых планет-гигантов, таких как Юпитер, массовая доля распространенности водорода и гелия около 74 % и 23-25 % соответственно, в то время атомная мольная доля элементов ближе к 92 % и 8 %.

    Однако, так как водород является двухатомным, а гелий - нет, в условиях внешней атмосферы Юпитера, молекулярная мольная доля водорода составляет около 86 %, а гелия - 13 %.

    Это была сенсация — оказывается, важнейшее вещество на Земле состоит из двух не менее важных химических элементов. «АиФ» решил заглянуть в таблицу Менделеева и вспомнить, благодаря каким же элементам и соединениям существует Вселенная, а также жизнь на Земле и человеческая цивилизация.

    ВОДОРОД (H)

    Где встречается: самый распространённый элемент во Вселенной, её главный «строительный материал». Из него состоят звёзды, в том числе Солнце. Благодаря термоядерному синтезу с участием водорода Солнце будет греть нашу планету ещё 6,5 млрд. лет.

    Чем полезен: в промышленности — при производстве аммиака, мыла и пластмасс. Большие перспективы у водородной энергетики: этот газ не загрязняет окружающую среду, т. к. при сгорании даёт только водяной пар.

    УГЛЕРОД (C)

    Где встречается: любой организм в значительной степени построен из углерода. В теле человека этот элемент занимает около 21%. Так, наши мышцы состоят из него на 2/3. В свободном состоянии в природе встречается в виде графита и алмаза.

    Чем полезен: пища, энергоносители и мн. др. Класс соединений на основе углерода огромен — углеводороды, белки, жиры и т. д. Этот элемент незаменим в нанотехнологиях.

    АЗОТ (N)

    Где встречается: атмосфера Земли на 75% состоит из азота. Входит в состав белков, аминокислот, гемоглобина и др.

    Чем полезен: необходим для существования животных и растений. В промышленности используется как газовая среда для упаковки и хранения, хладагент. С его помощью синтезируют разнообразные соединения — аммиак, удобрения, взрывчатые вещества, красители.

    КИСЛОРОД (O)

    Где встречается: Самый распространённый на Земле элемент, на его долю приходится около 47% массы твёрдой земной коры. Морские и пресные воды на 89% состоят из кислорода, атмосфера — на 23%.

    Чем полезен: Благодаря кислороду живые существа могут дышать, без него не был бы возможен огонь. Этот газ широко используется в медицине, металлургии, пищевой промышленности, энергетике.

    УГЛЕКИСЛЫЙ ГАЗ (CO2)

    Где встречается: В атмосфере, в морской воде.

    Чем полезен: Благодаря этому соединению растения могут дышать. Процесс поглощения углекислоты из воздуха называется фотосинтезом. Это основной источник биологической энергии. Стоит напомнить, что энергия, которую мы получаем при сжигании ископаемого топлива (угля, нефти, газа), накоплена в недрах земли на протяжении миллионов лет именно благодаря фотосинтезу.

    ЖЕЛЕЗО (Fe)

    Где встречается: один из самых распространённых в Солнечной системе элементов. Из него состоят ядра планет земной группы.

    Чем полезен: металл, с древних времён применяемый человеком. Целая историческая эпоха получила название Железного века. Сейчас до 95% мирового производства металлов приходится на железо, это основной компонент сталей и чугунов.

    СЕРЕБРО (Ag)

    Где встречается: Один из дефицитных элементов. Раньше встречался в природе в самородном виде.

    Чем полезен: С середины XIII века стал традиционным материалом для изготовления посуды. Обладает уникальными свойствами, поэтому применяется в различных отраслях — в ювелирном деле, в фотографии, электротехнике и электронике. Известны и дезинфицирующие свойства серебра.

    ЗОЛОТО (Au)

    Где встречается: раньше встречался в природе в самородном виде. Добывается на приисках.

    Чем полезен: важнейший элемент мировой финансовой системы, т. к. запасы его невелики. Издавна использовалось в качестве денег. В настоящее время все банковские резервы золота оцениваются

    в 32 тыс. тонн — если сплавить их воедино, получится куб со стороной всего лишь 12 м. Используется в медицине, микроэлектронике, при ядерных исследованиях.

    КРЕМНИЙ (Si)

    Где встречается: По распространённости в земной коре этот элемент занимает второе место (27-30% всей массы).

    Чем полезен: Кремний — основной материал для электроники. Также применяется в металлургии и в производстве стекла и цемента.

    ВОДА (H2O)

    Где встречается: Наша планета на 71% покрыта водой. Тело человека на 65% состоит из этого соединения. Вода есть и в космическом пространстве, в теле комет.

    Чем полезна: Имеет ключевое значение в создании и поддержании жизни на Земле, потому что благодаря молекулярным свойствам является универсальным растворителем. У воды много уникальных свойств, о которых мы не задумываемся. Так, если бы она при замерзании не увеличивалась в объёме, жизнь просто не зародилась бы: водоёмы каждую зиму промерзали бы до дна. А так, расширяясь, более лёгкий лёд остаётся на поверхности, сохраняя под собой жизнеспособную среду.

    Все мы знаем, что водород наполняет нашу Вселенную на 75%. Но знаете ли вы, какие еще есть химические элементы, не менее важные для нашего существования и играющие значительную роль для жизни людей, животных, растений и всей нашей Земли? Элементы из этого рейтинга формируют всю нашу Вселенную!

    10. Сера (распространенность относительно кремния – 0.38)


    Этот химический элемент в таблице Менделеева значится под символом S и характеризуется атомным номером 16. Сера очень распространена в природе.

    9. Железо (распространенность относительно кремния – 0.6)

    Обозначается символом Fe, атомный номер – 26. Железо очень часто встречается в природе, особенно важную роль оно играет в формировании внутренней и внешней оболочки ядра Земли.

    8. Магний (распространенность относительно кремния – 0.91)

    В таблице Менделеева магний можно найти под символом Mg, и его атомный номер – 12. Что самое удивительное в этом химическом элементе, так это то, что он чаще всего выделяется при взрыве звезд в процессе их преобразования в сверхновые тела.

    7. Кремний (распространенность относительно кремния – 1)



    Обозначается как Si. Атомный номер кремния – 14. Этот серо-голубой металлоид очень редко встречается в земной коре в чистом виде, но довольно распространен в составе других веществ. Например, его можно обнаружить даже в растениях.

    6. Углерод (распространенность относительно кремния – 3.5)

    Углерод в таблице химических элементов Менделеева значится под символом С, его атомный номер – 6. Самой знаменитой аллотропной модификацией углерода являются одни из самых желанных драгоценных камней в мире – алмазы. Углерод активно применяют и в других в промышленных целях более будничного назначения.

    5. Азот (распространенность относительно кремния – 6.6)

    Символ N, атомный номер 7. Впервые открытый шотландским врачом Дэниелом Рутерфордом (Daniel Rutherford), азот чаще всего встречается в форме азотной кислоты и нитратов.

    4. Неон (распространенность относительно кремния – 8.6)



    Обозначается символом Ne, атомный номер — 10. Не секрет, что именно этот химический элемент ассоциируется с красивым свечением.

    3. Кислород (распространенность относительно кремния – 22)

    Химический элемент под символом О и с атомным номером 8, кислород незаменим для нашего существования! Но это не значит, что он присутствует только на Земле и служит только для человеческих легких. Вселенная полна сюрпризов.

    2. Гелий (распространенность относительно кремния – 3.100)

    Символ гелия – He, атомный номер – 2. Он бесцветен, не имеет запаха и вкуса, не ядовит, и его точка кипения – самая низкая среди всех химических элементов. А еще благодаря ему шарики взмывают ввысь!

    1. Водород (распространенность относительно кремния – 40.000)

    Истинный номер один в нашем списке, водород находится в таблице Менделеева под символом Н и обладает атомным номером 1. Это самый легкий химический элемент периодической таблицы и самый распространенный элемент во всей изученной человеком Вселенной.

    Самый простой и распространенный элемент

    Водород имеет только один протон и один электрон (это единственный элемент без нейтрона). Он является самым простым элементом во Вселенной, что объясняет, почему он также самый распространенный, — сказала Найман. Тем не менее изотоп водорода, называемый дейтерием, содержит один протон и один нейтрон, а другой, известный как тритий, имеет один протон и два нейтрона.

    В звездах атомы водорода сливаются, чтобы создать гелий - второй наиболее распространенный элемент во Вселенной. Гелий имеет два протона, два нейтрона и два электрона. Вместе гелий и водород составляют 99,9 процента всей известной материи во Вселенной.

    Тем не менее во Вселенной примерно в 10 раз больше водорода, чем гелия, как говорит Найман. «Кислорода, который является третьим самым распространенным элементом, примерно в 1000 раз меньше, чем водорода», — добавила она.

    Если говорить в общем, то чем выше атомный номер элемента, тем меньшее его количество можно найти во Вселенной.

    Водород в составе Земли

    Состав Земли, однако, отличается от того, который имеет Вселенная. Например, кислород является наиболее распространенным элементом по весу в земной коре. За ним следуют кремний, алюминий и железо. В человеческом организме наиболее распространенным элементом по весу является кислород, а затем — углерод и водород.

    Роль в человеческом теле

    Водород имеет ряд ключевых ролей в человеческом теле. Водородные связи помогают ДНК оставаться скрученным. Кроме того, водород способствует поддержанию правильного рН в желудке и других органах. Если ваш желудок приобретает слишком щелочную среду, выпускается водород, поскольку он связан с регулированием этого процесса. Если же среда в желудке слишком кислая, водород будет связываться с другими элементами.

    Водород в составе воды

    Кроме того, именно водород позволяет льду плавать на поверхности воды, так как водородные связи увеличивают расстояние между ее замороженными молекулами, что делает их менее плотными.

    Как правило, вещество является более плотным, когда оно находится в твердом состоянии, а не жидком, сказала Найман. Вода является единственным веществом, которое становится менее плотным в твердом виде.

    В чем опасность водорода

    Тем не менее водород также может быть опасным. Его реакция с кислородом привела к катастрофе дирижабля «Гинденбург», который убил 36 человек в 1937 году. Кроме того, водородные бомбы могут быть невероятно разрушительными, хотя их никогда не использовали в качестве оружия. Тем не менее их потенциал продемонстрировали в 1950-х годах такие страны, как США, СССР, Великобритания, Франция и Китай.

    Водородные бомбы, как и атомные, используют сочетание ядерного синтеза и реакций деления, что приводит к разрушениям. При взрыве они создают не только механические ударные волны, но и радиацию.

    Это была сенсация - оказывается, важнейшее вещество на Земле состоит из двух не менее важных химических элементов. «АиФ» решил заглянуть в таблицу Менделеева и вспомнить, благодаря каким же элементам и соединениям существует Вселенная, а также жизнь на Земле и человеческая цивилизация.

    ВОДОРОД (H)

    Где встречается: самый распространённый элемент во Вселенной, её главный «строительный материал». Из него состоят звёзды, в том числе Солнце. Благодаря термоядерному синтезу с участием водорода Солнце будет греть нашу планету ещё 6,5 млрд. лет.

    Чем полезен: в промышленности - при производстве аммиака, мыла и пластмасс. Большие перспективы у водородной энергетики: этот газ не загрязняет окружающую среду, т. к. при сгорании даёт только водяной пар.

    УГЛЕРОД (C)

    Где встречается: любой организм в значительной степени построен из углерода. В теле человека этот элемент занимает около 21%. Так, наши мышцы состоят из него на 2/3. В свободном состоянии в природе встречается в виде графита и алмаза.

    Чем полезен: пища, энергоносители и мн. др. Класс соединений на основе углерода огромен - углеводороды, белки, жиры и т. д. Этот элемент незаменим в нанотехнологиях.

    АЗОТ (N)

    Где встречается: атмосфера Земли на 75% состоит из азота. Входит в состав белков, аминокислот, гемоглобина и др.

    Чем полезен: необходим для существования животных и растений. В промышленности используется как газовая среда для упаковки и хранения, хладагент. С его помощью синтезируют разнообразные соединения - аммиак, удобрения, взрывчатые вещества, красители.

    КИСЛОРОД (O)

    Где встречается: Самый распространённый на Земле элемент, на его долю приходится около 47% массы твёрдой земной коры. Морские и пресные воды на 89% состоят из кислорода, атмосфера - на 23%.

    Чем полезен: Благодаря кислороду живые существа могут дышать, без него не был бы возможен огонь. Этот газ широко используется в медицине, металлургии, пищевой промышленности, энергетике.

    УГЛЕКИСЛЫЙ ГАЗ (CO2)

    Где встречается: В атмосфере, в морской воде.

    Чем полезен: Благодаря этому соединению растения могут дышать. Процесс поглощения углекислоты из воздуха называется фотосинтезом. Это основной источник биологической энергии. Стоит напомнить, что энергия, которую мы получаем при сжигании ископаемого топлива (угля, нефти, газа), накоплена в недрах земли на протяжении миллионов лет именно благодаря фотосинтезу.

    ЖЕЛЕЗО (Fe)

    Где встречается: один из самых распространённых в Солнечной системе элементов. Из него состоят ядра планет земной группы.

    Чем полезен: металл, с древних времён применяемый человеком. Целая историческая эпоха получила название Железного века. Сейчас до 95% мирового производства металлов приходится на железо, это основной компонент сталей и чугунов.

    СЕРЕБРО (Ag)

    Где встречается: Один из дефицитных элементов. Раньше встречался в природе в самородном виде.

    Чем полезен: С середины XIII века стал традиционным материалом для изготовления посуды. Обладает уникальными свойствами, поэтому применяется в различных отраслях - в ювелирном деле, в фотографии, электротехнике и электронике. Известны и дезинфицирующие свойства серебра.

    ЗОЛОТО (Au)

    Где встречается: раньше встречался в природе в самородном виде. Добывается на приисках.

    Чем полезен: важнейший элемент мировой финансовой системы, т. к. запасы его невелики. Издавна использовалось в качестве денег. В настоящее время все банковские резервы золота оцениваются

    в 32 тыс. тонн - если сплавить их воедино, получится куб со стороной всего лишь 12 м. Используется в медицине, микроэлектронике, при ядерных исследованиях.

    КРЕМНИЙ (Si)

    Где встречается: По распространённости в земной коре этот элемент занимает второе место (27-30% всей массы).

    Чем полезен: Кремний - основной материал для электроники. Также применяется в металлургии и в производстве стекла и цемента.

    ВОДА (H2O)

    Где встречается: Наша планета на 71% покрыта водой. Тело человека на 65% состоит из этого соединения. Вода есть и в космическом пространстве, в теле комет.

    Чем полезна: Имеет ключевое значение в создании и поддержании жизни на Земле, потому что благодаря молекулярным свойствам является универсальным растворителем. У воды много уникальных свойств, о которых мы не задумываемся. Так, если бы она при замерзании не увеличивалась в объёме, жизнь просто не зародилась бы: водоёмы каждую зиму промерзали бы до дна. А так, расширяясь, более лёгкий лёд остаётся на поверхности, сохраняя под собой жизнеспособную среду.

    Водород является самым распространенным элементом во Вселенной. Но почему?

    Для того чтобы ответить на этот вопрос, мы должны вернуться к Большому взрыву, сказала Майя Найман, профессор химии в Университете штата Орегон.

    Большой взрыв привел к созданию всех элементов, которые мы можем найти в периодической таблице. Они являются строительными блоками, помогающими создать Вселенную. Каждый элемент имеет уникальный номер элементарных частиц - протонов (положительно заряженных), нейтронов (нейтральных) и электронов (отрицательно заряженных).

    Самый простой и распространенный элемент

    Водород имеет только один протон и один электрон (это единственный элемент без нейтрона). Он является самым простым элементом во Вселенной, что объясняет, почему он также самый распространенный, - сказала Найман. Тем не менее изотоп водорода, называемый дейтерием, содержит один протон и один нейтрон, а другой, известный как тритий, имеет один протон и два нейтрона.

    В звездах атомы водорода сливаются, чтобы создать гелий – второй наиболее распространенный элемент во Вселенной. Гелий имеет два протона, два нейтрона и два электрона. Вместе гелий и водород составляют 99,9 процента всей известной материи во Вселенной.


    Тем не менее во Вселенной примерно в 10 раз больше водорода, чем гелия, как говорит Найман. "Кислорода, который является третьим самым распространенным элементом, примерно в 1000 раз меньше, чем водорода", - добавила она.

    Если говорить в общем, то чем выше атомный номер элемента, тем меньшее его количество можно найти во Вселенной.


    Водород в составе Земли

    Состав Земли, однако, отличается от того, который имеет Вселенная. Например, кислород является наиболее распространенным элементом по весу в земной коре. За ним следуют кремний, алюминий и железо. В человеческом организме наиболее распространенным элементом по весу является кислород, а затем - углерод и водород.

    Роль в человеческом теле

    Водород имеет ряд ключевых ролей в человеческом теле. Водородные связи помогают ДНК оставаться скрученным. Кроме того, водород способствует поддержанию правильного рН в желудке и других органах. Если ваш желудок приобретает слишком щелочную среду, выпускается водород, поскольку он связан с регулированием этого процесса. Если же среда в желудке слишком кислая, водород будет связываться с другими элементами.


    Водород в составе воды

    Кроме того, именно водород позволяет льду плавать на поверхности воды, так как водородные связи увеличивают расстояние между ее замороженными молекулами, что делает их менее плотными.

    Как правило, вещество является более плотным, когда оно находится в твердом состоянии, а не жидком, сказала Найман. Вода является единственным веществом, которое становится менее плотным в твердом виде.


    В чем опасность водорода

    Тем не менее водород также может быть опасным. Его реакция с кислородом привела к катастрофе дирижабля "Гинденбург", который убил 36 человек в 1937 году. Кроме того, водородные бомбы могут быть невероятно разрушительными, хотя их никогда не использовали в качестве оружия. Тем не менее их потенциал продемонстрировали в 1950-х годах такие страны, как США, СССР, Великобритания, Франция и Китай.

    Водородные бомбы, как и атомные, используют сочетание ядерного синтеза и реакций деления, что приводит к разрушениям. При взрыве они создают не только механические ударные волны, но и радиацию.