Доказать что векторы линейно независимы. Линейная зависимость векторов. Базис системы векторов. Алгоритм нахождения базиса системы векторов

Введенные нами линейные операции над векторами дают возможность составлять различные выражения для векторных величин и преобразовывать их при помощи установленных для этих операций свойств.

Исходя из заданного набора векторов а 1 , ..., а n , можно составить выражение вида

где а 1 , ..., а n - произвольные действительные числа. Это выражение называют линейной комбинацией векторов а 1 , ..., а n . Числа α i , i = 1, n , представляют собой коэффициенты линейной комбинации . Набор векторов называют еще системой векторов .

В связи с введенным понятием линейной комбинации векторов возникает задача описания множества векторов, которые могут быть записаны в виде линейной комбинации данной системы векторов а 1 , ..., а n . Кроме того, закономерны вопросы об условиях, при которых существует представление вектора в виде линейной комбинации, и о единственности такого представления.

Определение 2.1. Векторы а 1 , ..., а n называют линейно зависимыми , если существует такой набор коэффициентов α 1 , ... , α n , что

α 1 a 1 + ... + α n а n = 0 (2.2)

и при этом хотя бы один из этих коэффициентов ненулевой. Если указанного набора коэффициентов не существует, то векторы называют линейно независимыми .

Если α 1 = ... = α n = 0, то, очевидно, α 1 а 1 + ... + α n а n = 0. Имея это в виду, можем сказать так: векторы а 1 , ..., а n линейно независимы, если из равенства (2.2) вытекает, что все коэффициенты α 1 , ... , α n равны нулю.

Следующая теорема поясняет, почему новое понятие названо термином "зависимость" (или "независимость"), и дает простой критерий линейной зависимости.

Теорема 2.1. Для того чтобы векторы а 1 , ..., а n , n > 1, были линейно зависимы, необходимо и достаточно, чтобы один из них являлся линейной комбинацией остальных.

◄ Необходимость. Предположим, что векторы а 1 , ..., а n линейно зависимы. Согласно определению 2.1 линейной зависимости, в равенстве (2.2) слева есть хотя бы один ненулевой коэффициент, например α 1 . Оставив первое слагаемое в левой части равенства, перенесем остальные в правую часть, меняя, как обычно, у них знаки. Разделив полученное равенство на α 1 , получим

a 1 =-α 2 /α 1 ⋅ a 2 - ... - α n /α 1 ⋅ a n

т.е. представление вектора a 1 в виде линейной комбинации остальных векторов а 2 , ..., а n .

Достаточность. Пусть, например, первый вектор а 1 можно представить в виде линейной комбинации остальных векторов: а 1 = β 2 а 2 + ... + β n а n . Перенеся все слагаемые из правой части в левую, получим а 1 - β 2 а 2 - ... - β n а n = 0, т.е. линейную комбинацию векторов а 1 , ..., а n с коэффициентами α 1 = 1, α 2 = - β 2 , ..., α n = - β n , равную нулевому вектору. В этой линейной комбинации не все коэффициенты равны нулю. Согласно определению 2.1, векторы а 1 , ..., а n линейно зависимы.

Определение и критерий линейной зависимости сформулированы так, что подразумевают наличие двух или более векторов. Однако можно также говорить о линейной зависимости одного вектора. Чтобы реализовать такую возможность, нужно вместо "векторы линейно зависимы" говорить "система векторов линейно зависима". Нетрудно убедиться, что выражение "система из одного вектора линейно зависима" означает, что этот единственный вектор является нулевым (в линейной комбинации имеется только один коэффициент, и он не должен равняться нулю).

Понятие линейной зависимости имеет простую геометрическую интерпретацию. Эту ин-терпретацию проясняют следующие три утверждения.

Теорема 2.2. Два вектора линейно зависимы тогда и только тогда, когда они коллинеарны.

◄ Если векторы а и b линейно зависимы, то один из них, например а, выражается через другой, т.е. а = λb для некоторого действительного числа λ. Согласно определению 1.7 произведения вектора на число, векторы а и b являются коллинеарными.

Пусть теперь векторы а и b коллинеарны. Если они оба нулевые, то очевидно, что они линейно зависимы, так как любая их линейная комбинация равна нулевому вектору. Пусть один из этих векторов не равен 0, например вектор b. Обозначим через λ отношение длин векторов: λ = |а|/|b|. Коллинеарные векторы могут быть однонаправленными или противоположно направленными . В последнем случае у λ изменим знак. Тогда, проверяя определение 1.7, убеждаемся, что а = λb. Согласно теореме 2.1, векторы а и b линейно зависимы.

Замечание 2.1. В случае двух векторов, учитывая критерий линейной зависимости, доказанную теорему можно переформулировать так: два вектора коллинеарны тогда и только тогда, когда один из них представляется как произведение другого на число. Это является удобным критерием коллинеарности двух векторов.

Теорема 2.3. Три вектора линейно зависимы тогда и только тогда, когда они компланарны .

◄ Если три вектора а, Ь, с линейно зависимы, то, согласно теореме 2.1, один из них, например а, является линейной комбинацией остальных: а = βb + γс. Совместим начала векторов b и с в точке A. Тогда векторы βb, γс будут иметь общее начало в точке A и по правилу параллелограмма их сумма, т.е. вектор а, будет представлять собой вектор с началом A и концом , являющимся вершиной параллелограмма, построенного на векторах-слагаемых. Таким образом, все векторы лежат в одной плоскости, т. е. компланарны.

Пусть векторы а, b, с компланарны. Если один из этих векторов является нулевым, то очевидно, что он будет линейной комбинацией остальных. Достаточно все коэффициенты линейной комбинации взять равными нулю. Поэтому можно считать, что все три вектора не являются нулевыми. Совместим начала этих векторов в общей точке O. Пусть их концами будут соот-ветственно точки A, B, C (рис. 2.1). Через точку C проведем прямые, параллельные прямым, проходящим через пары точек O, A и O, B. Обозначив точки пересечения через A" и B", получим параллелограмм OA"CB", следовательно, OC" = OA" + OB" . Вектор OA" и ненулевой вектор а= OA коллинеарны, а потому первый из них может быть получен умножением второго на действительное число α:OA" = αOA . Аналогично OB" = βOB , β ∈ R. В результате получаем,что OC" = α OA + βOB , т.е. вектор с является линейной комбинацией векторов а и b. Согласно теореме 2.1, векторы a, b, с являются линейно зависимыми.

Теорема 2.4. Любые четыре вектора линейно зависимы.

◄ Доказательство проводим по той же схеме, что и в теореме 2.3. Рассмотрим произвольные четыре вектора a, b, с и d. Если один из четырех векторов является нулевым, либо среди них есть два коллинеарных вектора, либо три из четырех векторов компланарны, то эти четыре вектора линейно зависимы. Например, если векторы а и b коллинеарны, то мы можем составить их линейную комбинацию αa + βb = 0 с ненулевыми коэффициентами, а затем в эту комбинацию добавить оставшиеся два вектора, взяв в качестве коэффициентов нули. Получим равную 0 линейную комбинацию четырех векторов, в которой есть ненулевые коэффициенты.

Таким образом, мы можем считать, что среди выбранных четырех векторов нет нулевых, никакие два не коллинеарны и никакие три не являются компланарными. Выберем в качестве их общего начала точку О. Тогда концами векторов a, b, с, d будут некоторые точки A, B, С, D (рис. 2.2). Через точку D проведем три плоскости, параллельные плоскостям ОВС, OCA, OAB, и пусть A", B", С" - точки пересечения этих плоскостей с прямыми OA, OB, ОС соответственно. Мы получаем параллелепипед OA"C"B"C"B"DA", и векторы a, b, с лежат на его ребрах, выходящих из вершины О. Так как четырехугольник OC"DC" является параллелограммом, то OD = OC" + OC" . В свою очередь, отрезок ОС" является диагональю параллелограмма OA"C"B", так что OC" = OA" + OB" , а OD = OA" + OB" + OC" .

Остается заметить, что пары векторов OA ≠ 0 и OA" , OB ≠ 0 и OB" , OC ≠ 0 и OC" коллинеарны, и, следовательно, можно подобрать коэффициенты α, β, γ так, что OA" = αOA , OB" = βOB и OC" = γOC . Окончательно получаем OD = αOA + βOB + γOC . Следовательно, вектор OD выражается через остальные три вектора, а все четыре вектора, согласно теореме 2.1, линейно зависимы.

a 1 = { 3, 5, 1 , 4 }, a 2 = { –2, 1, -5 , -7 }, a 3 = { -1, –2, 0, –1 }.

Р е ш е н и е. Ищем общее решение системы уравнений

a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

методом Гаусса. Для этого запишем эту однородную систему по координатам:

Матрица системы

Разрешенная система имеет вид: (r A = 2, n = 3). Система совместна и неопределена. Ее общее решение (x 2 – свободная переменная): x 3 = 13x 2 ; 3x 1 – 2x 2 – 13x 2 = 0 => x 1 = 5x 2 => X o = . Наличие ненулевого частного решения, например, , говорит о том, векторы a 1 , a 2 , a 3 линейно зависимы.

Пример 2.

Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -20, -15, - 4 }, a 2 = { –7, -2, -4 }, a 3 = { 3, –1, –2 }.

Р е ш е н и е. Рассмотрим однородную систему уравнений a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

или в развернутом виде (по координатам)

Система однородна. Если она невырождена, то она имеет единственное решение. В случае однородной системы – нулевое (тривиальное) решение. Значит, в этом случае система векторов независима. Если же система вырождена, то она имеет ненулевые решения и, следовательно, она зависима.

Проверяем систему на вырожденность:

= –80 – 28 + 180 – 48 + 80 – 210 = – 106 ≠ 0.

Система невырождена и, т.о., векторы a 1 , a 2 , a 3 линейно независимы.

Задания. Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -4, 2, 8 }, a 2 = { 14, -7, -28 }.

2. a 1 = { 2, -1, 3, 5 }, a 2 = { 6, -3, 3, 15 }.

3. a 1 = { -7, 5, 19 }, a 2 = { -5, 7 , -7 }, a 3 = { -8, 7, 14 }.

4. a 1 = { 1, 2, -2 }, a 2 = { 0, -1, 4 }, a 3 = { 2, -3, 3 }.

5. a 1 = { 1, 8 , -1 }, a 2 = { -2, 3, 3 }, a 3 = { 4, -11, 9 }.

6. a 1 = { 1, 2 , 3 }, a 2 = { 2, -1 , 1 }, a 3 = { 1, 3, 4 }.

7. a 1 = {0, 1, 1 , 0}, a 2 = {1, 1 , 3, 1}, a 3 = {1, 3, 5, 1}, a 4 = {0, 1, 1, -2}.

8. a 1 = {-1, 7, 1 , -2}, a 2 = {2, 3 , 2, 1}, a 3 = {4, 4, 4, -3}, a 4 = {1, 6, -11, 1}.

9. Доказать, что система векторов будет линейно зависимой, если она содержит:

а) два равных вектора;

б) два пропорциональных вектора.

Пусть в -мерном арифметическом пространстве имеется совокупность векторов .

Определение 2.1. Совокупность векторов называется линейно независимой системой векторов, если равенство вида

выполняется только при нулевых значениях числовых параметров .

Если равенство (2.1) может быть выполнено при условии, что хотя бы один из коэффициентов отличен от нуля, то такая система векторов будет называться линейно зависимой .

Пример 2.1. Проверить линейную независимость векторов

Решение. Составим равенство вида (2.1)

Левая часть данного выражения может обращаться в нуль только при выполнении условия , которое означает, что система является линейно-независимой.

Пример 2.1. Будут ли векторы линейно независимыми?

Решение. Нетрудно проверить, что равенство верно при значениях , . Значит, данная система векторов линейно зависима.

Теорема 2.1. Если система векторов является линейно зависимой, то любой вектор из этой системы может быть представлен в виде линейной комбинации (или суперпозиции) остальных векторов системы.

Доказательство . Предположим, что система векторов линейно зависима. Тогда в силу определения существует набор чисел , среди которых хотя бы одно число отлично от нуля, и при этом справедливо равенство (2.1):

Без потери общности предположим, что ненулевым коэффициентом является , то есть . Тогда последнее равенство можно разделить на и далее выразить вектор :

.

Таким образом, вектор представлен в виде суперпозиции векторов . Теорема 1 доказана.

Следствие. Если – совокупность линейно независимых векторов, то ни один вектор из этого набора не может быть выражен через остальные .

Теорема 2.2. Если система векторов содержит ноль-вектор, то такая система обязательно будет линейно зависимой .

Доказательство . Пусть вектор является ноль-вектором, то есть .

Тогда выбираем постоянные () следующим образом:

, .

При этом равенство (2.1) выполняется. Первое слагаемое слева равно нулю вследствие того, что – ноль-вектор. Остальные слагаемые обращаются в нуль, будучи умноженными на нулевые константы (). Таким образом,

при , а значит, векторы линейно зависимые. Теорема 2.2 доказана.

Следующий вопрос, на который нам предстоит ответить, какое наибольшее количество векторов может составить линейно независимую систему в n -мерном арифметическом пространстве. В пункте 2.1 был рассмотрен естественный базис (1.4):

Было установлено, что произвольный вектор -мерного пространства является линейной комбинацией векторов естественного базиса, то есть произвольный вектор выражается в естественном базисе в виде



, (2.2)

где – координаты вектора , представляющие собой некоторые числа. Тогда равенство

возможно лишь при , а значит, векторов естественного базиса образуют линейно независимую систему. Если добавить к этой системе произвольный вектор , то на основании следствия теоремы 1 система будет зависимой, поскольку вектор выражается через векторы по формуле (2.2).

Этот пример показывает, что в n -мерном арифметическом пространстве существуют системы, состоящие из линейно независимых векторов. А если к этой системе добавить хотя бы один вектор, то получим систему линейно зависимых векторов. Докажем, что если число векторов превышает размерность пространства, то они линейно зависимые.

Теорема 2.3. В -мерном арифметическом пространстве не существует системы, состоящей более чем из линейно независимых векторов.

Доказательство . Рассмотрим произвольных -мерных векторов:

………………………

Пусть . Составим линейную комбинацию векторов (2.3) и приравняем её к нулю:

Векторное равенство (2.4) равносильно скалярным равенствам для координат векторов :

(2.5)

Эти равенства образуют систему однородных уравнений с неизвестными . Так как число неизвестных больше числа уравнений (), то в силу следствия теоремы 9.3 раздела 1 однородная система (2.5) имеет ненулевое решение. Следовательно, равенство (2.4) справедливо при некоторых значениях , среди которых не все равны нулю, а значит, система векторов (2.3) линейно зависимая. Теорема 2.3 доказана.

Следствие. В -мерном пространстве существуют системы, состоящие из линейно независимых векторов, а любая система, содержащая больше чем векторов, будет линейно зависимой.

Определение 2.2. Систему линейно независимых векторов называют базисом пространства , если любой вектор пространства может быть выражен в виде линейной комбинации этих линейно независимых векторов.



2.3. Линейное преобразование векторов

Рассмотрим два вектора и -мерного арифметического пространства .

Определение 3.1. Если каждому вектору сопоставлен вектор из этого же пространства , то говорят, что задано некоторое преобразование -мерного арифметического пространства.

Будем обозначать это преобразование через . Вектор будем называть образом . Можно записать равенсто

. (3.1)

Определение 3.2. Преобразование (3.1) будем называть линейным, если оно удовлетворяет следующим свойствам:

, (3.2)

, (3.3)

где - произвольный скаляр (число).

Зададим преобразование (3.1) в координатной форме. Пусть координаты векторов и связаны зависимостью

(3.4)

Формулы (3.4) задают преобразование (3.1) в координатной форме. Коэффициенты () системы равенств (3.4) можно представить в виде матрицы

называемой матрицей преобразования (3.1).

Введём векторы-столбцы

,

элементы которых суть координаты векторов и соответственно, так что и . Будем далее векторы-столбцы и называть векторами.

Тогда преобразование (3.4) может быть записано в матричной форме

. (3.5)

Преобразование (3.5) является линейным в силу свойств арифметических операций над матрицами .

Рассмотрим некоторое преобразование , образом которого является ноль-вектор. В матричном виде это преобразование будет иметь вид

, (3.6)

а в координатной форме – представлять собой систему линейных однородных уравнений

(3.7)

Определение 3.3. Линейное преобразование называется невырожденным, если определитель матрицы линейного преобразования не равен нулю, то есть . Если определитель обращается в нуль, то преобразование будет вырожденным .

Известно, что система (3.7) имеет тривиальное (очевидное) решение – нулевое. Это решение является единственным, если только определитель матрицы не равен нулю.

Ненулевые решения системы (3.7) могут появляться, если линейное преобразование является вырожденным, то есть при нулевом определителе матрицы .

Определение 3.4. Рангом преобразования (3.5) называется ранг матрицы преобразования .

Можно сказать, что этому же числу равно количество линейно-независимых строк матрицы .

Обратимся к геометрической интерпретации линейного преобразования (3.5).

Пример 3.1. Пусть задана матрица линейного преобразования , где Возьмем произвольный вектор , где и найдем его образ:
Тогда вектор
.

Если , то вектор изменит и длину и направление. На рис.1 .

Если , то получим образ

,

то есть вектор
или , а это значит, что изменит только длину, но не изменит направление (рис. 2).

Пример 3.2. Пусть , . Найдём образ:

,

то есть
, или .

Вектор в результате преобразования изменил своё направление на противоположное, при этом длина вектора сохранилась (рис. 3).

Пример 3.3. Рассмотрим матрицу линейного преобразования. Несложно показать, что в этом случае образ вектора полностью совпадает с самим вектором (рис. 4). Действительно,

.

Можно сказать, что линейное преобразование векторов изменяет исходный вектор и по длине, и по направлению. Однако в некоторых случаях существуют такие матрицы, которые преобразуют вектор только по направлению (пример 3.2) или только по длине (пример 3.1, случай ).

Следует заметить, что все векторы, лежащие на одной прямой, образуют систему линейно зависимых векторов.

Вернёмся к линейному преобразованию (3.5)

и рассмотрим совокупность векторов , для которых образом является нуль-вектор, так что .

Определение 3.5 . Совокупность векторов , являющихся решением уравнения , образует подпространство -мерного арифметического пространства и называется ядром линейного преобразования .

Определение 3.6. Дефектом линейного преобразования называется размерность ядра этого преобразования, то есть, наибольшее число линейно-независимых векторов , удовлетворяющих уравнению .

Так как рангом линейного преобразования мы называем ранг матрицы , то можно сформулировать следующее утверждение относительно дефекта матрицы: дефект равен разности , где – размерность матрицы, – её ранг.

Если ранг матрицы линейного преобразования (3.5) ищется методом Гаусса, то ранг совпадает с количеством отличных от нуля элементов на главной диагонали уже преобразованной матрицы, а дефект определяется количеством нулевых строк.

Если линейное преобразование является невырожденным, то есть , то его дефект обращается в ноль, поскольку ядром является единственный нулевой вектор.

Если линейное преобразование вырожденное и , то система (3.6) кроме нулевого решения имеет другие, и дефект в этом случае уже отличен от нуля.

Особый интерес вызывают преобразования, которые, меняя длину, не меняют направление вектора. Точнее говоря, оставляют вектор на прямой, содержащей исходный вектор, при условии, что прямая проходит через начало координат. Такие преобразования будут рассмотрены в следующем пункте 2.4.

Другими словами линейная зависимость группы векторов означает, что существует среди них вектор, который можно представить линейной комбинацией других векторов этой группы.

Допустим . Тогда

Следовательно вектор x линейно зависим из векторов этой группы.

Векторы x , y , ..., z называются линейно независимыми векторами , если из равенства (0) следует, что

α=β= ...= γ=0.

То есть группы векторов линейно независимы, если ни один вектор не может быть представлен линейной комбинацией других векторов этой группы.

Определение линейной зависимости векторов

Пусть заданы m векторов строк порядка n:

Сделав Гауссово исключение , приведем матрицу (2) к верхнему треугольному виду. Элементы последнего столбца изменяются только тогда, когда строки переставляются. После m шагов исключения получим:

где i 1 , i 2 , ..., i m - индексы строк, полученные при возможной перестановки строк. Рассматривая полученные строки из индексов строк исключаем те, которые соответствуют нулевым вектором строк. Оставшиеся строки образуют линейно независимые векторы. Отметим, что при составлении матрицы (2) изменяя последовательность векторов строк, можно получить другую группу линейно независимых векторов. Но подпространство, которую оба эти группы векторов образуют совпадают.

Задача 1. Выяснить, является ли система векторов линейно независимой. Систему векторов будем задавать матрицей системы, столбцы которой состоят из координат векторов.

.

Решение. Пусть линейная комбинация равна нулю. Записав это равенство в координатах, получим следующую систему уравнений:

.

Такая система уравнений называется треугольной. Она имеет единственное решение . Следовательно, векторы линейно независимы.

Задача 2. Выяснить, является ли линейно независимой система векторов.

.

Решение. Векторы линейно независимы (см. задачу 1). Докажем, что вектор является линейной комбинацией векторов . Коэффициенты разложения по векторам определяются из системы уравнений

.

Эта система, как треугольная, имеет единственное решение.

Следовательно, система векторов линейно зависима.

Замечание . Матрицы, такого вида, как в задаче 1, называются треугольными , а в задаче 2 – ступенчато-треугольными . Вопрос о линейной зависимости системы векторов легко решается, если матрица, составленная из координат этих векторов, является ступенчато треугольной. Если матрица не имеет специального вида, то с помощью элементарных преобразований строк , сохраняющих линейные соотношения между столбцами, её можно привести к ступенчато-треугольному виду.

Элементарными преобразованиями строк матрицы(ЭПС) называются следующие операции над матрицей:

1) перестановка строк;

2) умножение строки на отличное от нуля число;

3) прибавление к строке другой строки, умноженной на произвольное число.

Задача 3. Найти максимальную линейно независимую подсистему и вычислить ранг системы векторов

.

Решение. Приведем матрицу системы с помощью ЭПС к ступенчато-треугольному виду. Чтобы объяснить порядок действий, строчку с номером преобразуемой матрицы обозначим символом . В столбце после стрелки указаны действия над строками преобразуемой матрицы, которые надо выполнить для получения строк новой матрицы.


.

Очевидно, что первые два столбца полученной матрицы линейно независимы, третий столбец является их линейной комбинацией, а четвертый не зависит от двух первых. Векторы называются базисными. Они образуют максимальную линейно независимую подсистему системы , а ранг системы равен трем.



Базис, координаты

Задача 4. Найти базис и координаты векторов в этом базисе на множестве геометрических векторов, координаты которых удовлетворяют условию .

Решение . Множество является плоскостью, проходящей через начало координат. Произвольный базис на плоскости состоит из двух неколлинеарных векторов. Координаты векторов в выбранном базисе определяются решением соответствующей системы линейных уравнений.

Существует и другой способ решения этой задачи, когда найти базис можно по координатам.

Координаты пространства не являются координатами на плоскости , так как они связаны соотношением , то есть не являются независимыми. Независимые переменные и (они называются свободными) однозначно определяют вектор на плоскости и, следовательно, они могут быть выбраны координатами в . Тогда базис состоит из векторов, лежащих в и соответствующих наборам свободных переменных и , то есть .

Задача 5. Найти базис и координаты векторов в этом базисе на множестве всех векторов пространства , у которых нечетные координаты равны между собой.

Решение . Выберем, как и в предыдущей задаче, координаты в пространстве .

Так как , то свободные переменные однозначно определяют вектор из и, следовательно, являются координатами. Соответствующий базис состоит из векторов .

Задача 6. Найти базис и координаты векторов в этом базисе на множестве всех матриц вида , где – произвольные числа.

Решение . Каждая матрица из однозначно представима в виде:

Это соотношение является разложением вектора из по базису
с координатами .

Задача 7. Найти размерность и базис линейной оболочки системы векторов

.

Решение. Преобразуем с помощью ЭПС матрицу из координат векторов системы к ступенчато-треугольному виду.




.

Столбцы последней матрицы линейно независимы, а столбцы линейно выражаются через них. Следовательно, векторы образуют базис , и .

Замечание . Базис в выбирается неоднозначно. Например, векторы также образуют базис .