Сложные эфиры: номенклатура, кислотный и щелочной гидролиз, аммонолиз; идентификация. Сложные эфиры. Кислотный и щелочной гидролиз сложных эфиров. Переэтерификация. Аммонолиз. Сложноэфирная конденсация Механизм кислотного гидролиза сложных эфиров

Структурная формула сложных эфиров в общем виде:

где R и R’ - углеводородные радикалы.

Гидролиз сложных эфиров

Одной из наиболее характерных для сложных эфиров способностей (помимо этерификации) является их гидролиз - расщепление под действием воды. По-другому гидролиз сложных эфиров называют омылением. В отличие от гидролиза солей в данном случае он практически необратим. Различают щелочной и кислотный гидролиз сложных эфиров. В обоих случаях образуются спирт и кислота:

а) кислотный гидролиз

б) щелочной гидролиз

Примеры решения задач

Щелочной гидролиз — сложный эфир

Cтраница 1

Щелочной гидролиз сложных эфиров, как и кислотный, протекает по механизму присоединения — отщепления.  

Щелочной гидролиз сложных эфиров, который иногда называют реакцией специфического основного катализа, в действительности представляет собой реакцию замещения (см. разд.  

Щелочной гидролиз сложных эфиров по механизму Вас2 протекает через нуклеофильное присоединение по карбонильной группе с образованием тетраэдрического интермедиата (см. разд. Это общая реакция нуклеофилов с карбонильной группой эфира, и различные примеры ее применения будут рассмотрены ниже в настоящем разделе. Взаимодействие с гидрид-ионами приводит к восстановлению, поэтому эта реакция будет обсуждаться вместе с другими реакциями восстановления (см. разд.  

Щелочной гидролиз сложных эфиров протекает с тепловым эффектом, равным теплоте нейтрализации образующейся кислоты. Экзотермическими являются и реакции этерификации спиртов хлорангидридами кислот, а также первая стадия этерификации ангидридами кислот.

Щелочной гидролиз сложных эфиров — реакция необратимая, так как конечный продукт реакции (карбоксилат-анион) не проявляет свойств карбонильного соединения вследствие полной делокалнзации отрицательного заряда.  

Щелочной гидролиз сложных эфиров протекает с тепловым эффектом, равным теплоте нейтрализации образующейся кислоты. Экзотермическими являются и реакции этерификации спиртов хлорангидридами кислот, а также первая стадия этерификации ангидридами кислот.  

Щелочной гидролиз сложных эфиров называют — омылением. Скорость гидролиза эфиров возрастает также при нагревании и в случае применения избытка воды.  

Щелочной гидролиз сложных эфиров характерен для большого числа реакций, в которых отрицательно заряженный нуклеофил атакует карбонильный углерод нейтрального субстрата.  

Щелочной гидролиз сложных эфиров называют омылением. Скорость гидролиза эфиров возрастает также при нагревании и в случае применения избытка воды.  

Практически щелочной гидролиз сложных эфиров проводят в присутствии едких щелочей КОН, NaOH, а также гидроокисей щелочноземельных металлов Ва (ОН) 2, Са (ОН) 2 — Образующиеся при гидролизе кислоты связываются в виде солей соответствующих металлов, поэтому гидроокиси приходится брать по крайней мере в эквивалентном отношении со сложным эфиром. Обычно используют избыток основания. Выделение кислот из их солей осуществляется с помощью сильных минеральных кислот.  

Реакция щелочного гидролиза сложных эфиров называется ре акцией омыления.  

Реакция щелочного гидролиза сложных эфиров называется реакцией омыления.  

Метод щелочного гидролиза сложных эфиров входит как состав — пая часть п различные многостадийные процессы органического синтеза. Например, он используется в промышленном производстве жирных кислпт и спиртов окислением парафинов (гл.  

Страницы:      1    2    3    4

4.6. Сложные эфиры

Cложные эфиры могут быть получены при взаимодействии карбоновых кислот со спиртами (реакция этерификации ). Катализаторами являются минеральные кислоты.

Видеоопыт "Получение уксусноэтилового эфира".

Реакция этерификации в условиях кислотного катализа обратима.

Обратный процесс – расщепление сложного эфира при действии воды с образованием карбоновой кислоты и спирта – называют гидролизом сложного эфира . RCOOR’ + H2O (H+) RCOOH + R’OH Гидролиз в присутствии щелочи протекает необратимо (т.к. образующийся отрицательно заряженный карбоксилат-анион RCOO– не вступает в реакцию с нуклеофильным реагентом – спиртом).

Эта реакция называется омылением сложных эфиров (по аналогии со щелочным гидролизом сложноэфирных связей в жирах при получении мыла).

Эфиры низших карбоновых кислот и низших одноатомных спиртов имеют приятный запах цветов, ягод и фруктов. Эфиры высших одноосновных кислот и высших одноатомных спиртов – основа природных восков. Например, пчелиный воск содержит сложный эфир пальмитиновой кислоты и мирицилового спирта (мирицилпальмитат):

CH(CH)–CO–O–(CH)CH

Химические свойства — раздел Химия, ОБЩИЕ ЗАКОНОМЕРНОСТИ СТРОЕНИЯ И ХИМИЧЕСКОГО ПОВЕДЕНИЯ ОКСОСОЕДИНЕНИЙ 1. Гидролиз Сложных Эфиров (Кислый И Щелочной Катализ). …

1. Гидролиз сложных эфиров (кислый и щелочной катализ). Сложный эфир – слабое ацилирующее средство, его можно подвергнуть гидролизу в присутствии катализаторов (кислот или оснований).

1.1 Щелочной гидролиз:

Механизм щелочного гидролиза:

Щелочной гидролиз имеет ряд преимуществ перед кислотным:

  • протекает с большей скоростью, так как гидроксид-анион является более сильным и меньшим по объему нуклеофилом по сравнению с молекулой воды;
  • в щелочной среде реакция гидролиза необратима, поскольку образуется соль кислоты, не обладающая ацилирующей способностью.

Поэтому на практике гидролиз сложных эфиров чаще проводят в щелочной среде.

1.2 Кислотный гидролиз:

2. Реакция переэтерификации. Взаимодействие с алкоксидами в растворе соответствующего спирта ведет к обмену алкильных групп сложного эфира, реакция является обратимой:

3. Реакция аммонолиза:

Сложные эфиры в природе, их значение в промышленности. Вкачестве растворителей находят широкое применение наименее реакционноспособные производные карбоновых кислот – сложные эфиры, амиды, нитрилы.

Промышленное и препаративное значение имеют этилацетат, диметилформамид и ацетонитрил. Диметилформамид является апротонным растворителем как для полярных (даже соли), так и неполярных веществ и в настоящее время широко применяется в промышленности как растворитель для полиамидов, полиимидов, полиакрилонитрила, полиуретанов и др., используется для формирования волокон и пленок, приготовления клея и т. д., а также в лабораторной практике.

Сложные эфиры низших карбоновых кислот (С1 – С5 ) и низших спиртов (СН3ОН , С2Н5ОН) обладают фруктовым запахом – применяются для отдушки мыла и в кондитерских изделиях. Ацетаты, бутираты цитронеллола, гераниола, линалоола, обладающие приятным цветочным запахом, входят, например, в состав лавандового масла и применяются для изготовления мыла и одеколонов.

Сложные эфиры дифенилуксусной кислоты, например, диэтиламиноэтиловый эфир (спазмолитин), известны как спазмолитики – средства, снимающие спазмы гладкой мускулатуры внутренних органов и кровеносных сосудов. Анестезин – этиловый эфир n -аминобензойной кислоты, новокаин – диэтиламиноэтиловый эфир n -аминобензойной кислоты, парализуя нервные окончания, вызывают местную анестезию, обезболивание. Более сильным, чем новокаин, является ксикаин (N- 2,6-диметилфениламид N,N’ -диэтиламиноуксусной кислоты).

Этилацетат – бесцветная жидкость, находит применение в качестве растворителя для растворения нитроцеллюлозы, ацетилцеллюлозы и других полимерных материалов, для изготовления лаков, а также в пищевой промышленности и парфюмерии.

Бутилацетат – бесцветная жидкость с приятным запахом. Используют в лакокрасочной промышленности как растворитель нитроцеллюлозы и полиэфирных смол.

Амилацетаты – хорошие растворители для нитроцеллюлозы и других полимерных материалов. Изоамилацетат используется в пищевой промышленности (грушевая эссенция).

Искусственные фруктовые эссенции . Многие сложные эфиры имеют приятный запах и используются в пищевой промышленности и парфюмерии.

Все темы данного раздела:

ОБЩИЕ ЗАКОНОМЕРНОСТИ СТРОЕНИЯ И ХИМИЧЕСКОГО ПОВЕДЕНИЯ ОКСОСОЕДИНЕНИЙ
Кратные связи между углеродом и кислородом встречаются в альдегидах, кетонах, карбоновых кислотах, а также в их производных. Для соединений, содержащих карбонильную группу, наиболее характерными яв

ОКСОСОЕДИНЕНИЯ
Альдегиды и кетоны – это производные углеводородов, которые содержат в молекуле функциональную группу, носящую название карбонильной или оксогруппы. Если карбонильная группа связана с одни

Технические способы получения формальдегида
3.1 Каталитическое окисление метанола: 3.2 Ка

Специфические методы для ароматического ряда
11.1 Окисление алкиларенов. Частичное окисление алкилной группы, связанной с бензольным кольцом, можно осуществить действием различных окислителей. Метильная группа – MnO

Реакции нуклеофильного присоединения
1.1 Присоединение магнийалкилов: где

Реакции окисления альдегидов и кетонов
5.1 Окисление альдегидов. Альдегиды окисляются наиболее легко, превращаясь в карбоновые кислоты с тем же числом атомов углерода в цепи:

Реакции окисления-восстановления (диспропорционирования)
6.1 Реакция Канниццаро (1853 г.) характерна для альдегидов, не содержащих в α-положении водородных атомов, и происходит при их обработке концентрированными р

КАРБОНОВЫЕ КИСЛОТЫ И ИХ ПРОИЗВОДНЫЕ
Карбоновые кислоты – это производные углеводородов, содержащие в молекуле карбоксильную функциональную группу (–СООН). Это наиболее «окисленная» функциональная группа, что легко проследить,

МОНОКАРБОНОВЫЕ КИСЛОТЫ
Монокарбоновые кислоты– это производные углеводородов, содержащие в молекуле одну функциональную карбоксильную группу – СООН. Монокарбоновые кислоты называют также однооснов

Изомерия
Структурная: · скелетная; · метамерия Пространственная: · оптическая. Методы синтеза. Монокарбоновые

Реакции карбоновых кислот с нуклеофильными реагентами
1.1 Oбразование солей с металлами:

ПРОИЗВОДНЫЕ КАРБОНОВЫХ КИСЛОТ
Карбоновые кислоты образуют разнообразные производные (сложные эфиры, ангидриды, амиды и др.), которые участвуют во многих важных реакциях. Общая формула производных

Способы получения
1. Взаимодействие с хлоридом фосфора (V):

Химические свойства
1. Использование ангидридов как ацилирующих средств.

Ангидриды, как и галогенангидриды, обладают большой химической активностью, являются хорошими ацилирующими средствами (част

Способы получения амидов
1. Ацилирование аммиака:

Химические свойства
1. Гидролиз амидов 1.1 В кислой среде:

Способы получения
1. Реакция этерификации: Механизм этерифика

ДИКАРБОНОВЫЕ КИСЛОТЫ
К классу дикарбоновых кислот относятся соединения, содержащие две карбоксильные группы. Дикарбоновые кислоты подразделяют в зависимости от типа углеводородного радикала: ·

Общие способы получения дикарбоновых кислот
1. Окисление диолов и циклических кетонов:

Изомерия
Структурная: · скелетная; · изомерия положения; · метамерия. Пространственная: · геометрическая. Непредел

Химические свойства жиров
1. Гидролиз. Среди реакций жиров особое значение имеет гидролиз, или омыление, которое можно осуществить как кислотами, так и основаниями:

ОСОБЕННОСТИ ФИЗИЧЕСКИХ СВОЙСТВ ГОМО-ФУНКЦИОНАЛЬНЫХ ПРОИЗВОДНЫХ УГЛЕВОДОРОДОВ
Наличие функциональной группы, связанной с углеводородным заместителем, существенным образом сказывается на физических свойствах соединений. В зависимости от природы функциональной группы (атома) е

УГЛЕВОДОРОДОВ
Среди множества различных функциональных производных углеводородов имеются соединения высокотоксичные и опасные для окружающей среды, умеренно токсичные и совершенно безвредные, нетоксичные, широко

При нагревании сложных эфиров со спиртами протекает реакция двойного обмена, именуемая переэтерификацией. На эту реакцию оказывают каталитическое действие как кислоты, так и основания:

Для смещения равновесия в желаемом направлении применяют большой избыток спирта.

Бутиловый эфир метакриловой кислоты (бутилметакрилат) может быть получен с выходом 94% при нагревании метилметакрилата с н -бутанолом при непрерывном удалении метанола по мере его образования:

Алкоголиз сложных эфиров карбоновых кислот под влиянием щелочных катализаторов имеет особенно большое препаративное значение для синтеза эфиров термически нестабильных карбоновых кислот с длинной боковой цепью (например эфиров b -кетокислот) и эфиров спиртов, неустойчивых в кислых средах, которые нельзя получать обычными методами этерификации. В качестве катализаторов таких реакций применяют алкоголяты натрия, гидроксид натрия и карбонат калия.

Алкоголиз эфиров b -кетокислот легко осуществляется при 90-100°С без катализатора. Например, таким методом из ацетоуксусного эфира синтезирован октиловый эфир ацетоуксусной кислоты:

Так удается провести обменное замещение первичного спирта другим первичным или вторичным спиртом с более высокой температурой кипения, однако для получения сложных эфиров из третичных спиртов этот способ не пригоден. Эфиры третичных спиртов получают другим способом — взаимной переэтерификацией двух различных эфиров карбоновых кислот, например эфира муравьиной кислоты и какой-либо другой кислоты:

Реакцию проводят в присутствии каталитических количеств трет -бутилата натрия при 100-120°С.

При этом медленно отгоняется наиболее низкокипящий компонент равновесной смеси, в данном случае – метиловый эфир муравьиной кислоты (метилформиат, т. кип. 34°С).

Не нашли то, что искали? Воспользуйтесь поиском:

Гидролиз — простой эфир

Cтраница 1

Гидролиз простых эфиров в сильнокислой среде (разд.  

Впоследствии гидролиз простых эфиров стал представлять интерес с точки зрения теории химического строения, а именно в качестве реакции, с помощью которой можно определить относительную прочность углерод-кислородной связи в зависимости от строения радикала. В 30 — х годах появилась практическая потребность в разработке технически приемлемого способа гидролиза диэтилового эфира; эта потребность была продиктована тем, что в процессе производства синтетического каучука по способу Лебедева побочно образовывался эфир, который целесообразно было превращать в спирт. В этой связи в СССР гидролиз диэтилового эфира изучали Ваншейдт и Лозовская и Каган, Российская и Чернцов , применяя в качестве катализаторов окислы алюминия, титана, тория, хрома и марганца.  

В патентной литературе описан гидролиз простых эфиров с образованием спиртов под действием разбавленной серной кислоты при высоких температуре и давлении ; процесс был проведен при 272 С и 130 атм в течение 25 мин. Этот метод используют лишь в том случае, когда необходимо утилизировать избыток этилового эфира.  

В патентной литературе описан гидролиз простых эфиров с образованием спиртов под действием разбавленной серной кислоты при высоких температуре и давлении [ 22J; процесс был проведен при 272 С и 130 атм в течение 25 мин. Этот метод используют лишь в том случае, когда необходимо утилизировать избыток этилового эфира.  

Удаление ацетальдегида из сферы реакции в виде оксима обусловливает полноту гидролиза простого эфира. Не мешают определению вода, спирты, углеводороды.  

Аналогично катализируется гидролиз пептидов , амидов и эфиров фосфорной кислоты и гидратация пиридиновых альдегидов. Гидролиз простых эфиров не катализируется ионами металлов, так как не происходит образования хелатов и промежуточное соединение не может быть стабилизировано.  

Общий кислотно-основной катализ встречается очень часто, но существует несколько случаев, в которых проявляется специфический катализ ионами водорода или гидроксила; в этом случае константа скорости линейно изменяется с [ Н3О ] и [ ОН — ] и не зависит от присутствия других кислых и основных веществ. Например, специфический катализ был обнаружен при гидролизе простых эфиров (см. стр.  

Расщепление хлористым алюминием эфиров фенола дает готовый метод для получения трудно синтезируемых производных фенолов; здесь перечислены некоторые характерные превращения эфиров фенола в соответствующие фенолы. Несмотря на то, что расщепление алкоксигрупп так легко катализируется хлористым алюминием, не имеется никакого методического исследования о влиянии заместителей на катализируемый хлористым алюминием гидролиз простых эфиров.  

Однако для успешного проведения реакции необходимо наличие двух, например, метоксильных групп в молекуле азосо-ставляющей или применения очень активной диазосоставляю-щей. Интересно, что при азосочетании эфиров фенолов часто происходит гидролиз эфирной группировки, так что в результате образуется азокраситель, являющийся производным самого фенола. Напомним, что вообще гидролиз простых эфиров проходит очень трудно. Механизм этой реакции не исследован.  

В заключение можно сказать, что проведение омыления в условиях МФК синтетически выгодно в случае стерически затрудненных эфиров. При этом следует использовать систему твердый гидроксид калия / толуол и краун-зфиры или криптанды в качестве катализаторов. Кроме того, скорость гидролиза простых эфиров карбоновых кислот концентрированным водным раствором гидроксида натрия значительно выше для гидрофильных карбоксилатов. Хорошими катализаторами являются четвертичные аммониевые соли, особенно Bu4NHSO4 и некоторые анионные и неионные ПАВ. Это указывает на то, что может осуществляться любой из трех возможных механизмов: реакции на поверхности, мицеллярный катализ или истинная МФК-реакция. В зависимости от условий может реализоваться каждый из этих механизмов.  

Мы получим в результате следующие значения ДЯ сраВн: 311 для HI, 318 для НВг, 329 для НС1, 334 для воды и 334 для ROH. Таким образом, мы можем предсказать, что наибольшую реакционную способность будет иметь HI, в полном согласии с опытом, хотя на практике применяются концентрированные водные растворы, тогда как наши вычисления производились для реакций в газовой фазе. Хорошо известно, что при комнатной температуре простые эфиры практически не способны реагировать с водой и спиртами. Кроме того, принято говорить, что гидролиз простых эфиров ускоряется водородными, а не гидроксильными ионами, что находится в согласии с нуклеофильными свойствами, установленными для эфиров нашими приближенными вычислениями, Присоединение галоидоводородов к олефинам. В первую очередь надо установить, является ли определяющей скорость стадией элек-трофильная атака водородного иона или нуклеофильная атака галоидного иона на углеродный атом олефина.  

Простые эфиры представляют собой плохо растворимые в воде нейтральные жидкости. Они не реагируют с металлическим натрием, что позволяет удалять из них остатки воды и спирта с помощью металлического натрия. Простые эфиры отличаются большой прочностью.

Слабые кислоты и щелочи на них не действуют. Щелочи не способствуют гидролизу простых эфиров. Наряду с такой устойчивостью к гидролизу простые эфиры довольно легко окисляются кислородом воздуха, особенно под влиянием света, образуя перекиси (стр. Сложные эфиры, как правило, трудно растворимы в воде, но легко растворяются в большинстве органических растворителей. Многие из сложных эфиров обладают специфическим, приятным фруктовым запахом, что позволяет применять их для изготовления искусственных фруктовых эссенций в кондитерском деле или в парфюмерии, а также для идентификации некоторых кислот или спиртов по запаху их эфиров.  

Простые эфиры представляют собой плохо растворимые в воде нейтральные жидкости. Они не реагируют с металлическим натрием, что позволяет удалять из них остатки воды и спирта с помощью металлического натрия. Простые эфиры отличаются большой прочностью. Слабые кислоты и щелочи на них не действуют. Гидролиз простых эфиров протекает с трудом при нагревании с водой в присутствии кислот. Щелочи не способствуют гидролизу простых эфиров. Наряду с такой устойчивостью к гидролизу простые эфиры довольно легко окисляются кислородом воздуха, особенно под влиянием света, образуя перекиси (стр. Сложные эфиры, как правило, трудно растворимы в воде, но легко растворяются в большинстве органических растворителей. Многие из сложных эфиров обладают специфическим, приятным фруктовым запахом, что позволяет применять их для изготовления искусственных фруктовых эссенций в кондитерском деле или в парфюмерии, а также для идентификации некоторых кислот или спиртов по запаху их эфиров.  

Страницы:      1

Сложными эфирами называются функциональные производные карбоно­вых кислот обшей формулы RC(О)ОR" .

Сложные эфиры карбоновых кислот (а также сульфоновых кислот) называют аналогично солям, только вместо названия катиона употребляют название со­ответствующего алкила или арила, которое помещается перед названием ани­она и пишется с ним слитно. Наличие сложноэфирной группы -COOR также можно отразить описательным способом, например, «R-овый эфир (такой-то) кислоты» (такой способ менее предпочтителен ввиду его громоздкости):

Сложные эфиры низших спиртов и карбоновых кислот представляют со­бой летучие жидкости, с приятным запахом, плохо растворимые в воде и хорошо - в большинстве органических растворителей. Запахи сложных эфиров напоминают запахи разных фруктов, благодаря чему в пищевой промыш­ленности из них готовят эссенции, имитирующие фруктовые запахи. Повы­шенную летучесть сложных эфиров используют в аналитических целях.

Гидролиз. Важнейшей из реакций ацилирования является гидролиз слож­ных эфиров с образованием спирта и карбоновой кислоты:

Реакция осуществляется как в кислой, так и в щелочной среде. Кислотно-катализируемый гидролиз сложных эфиров - реакция, обратная этерифика­ции, протекает по тому же самому механизму А АС 2:

Нуклеофилом в этой реакции является вода. Смещение равновесия в сторо­ну образования спирта и кислоты обеспечивается добавлением избытка воды.

Щелочной гидролиз необратим, в процессе реакции на моль эфира расхо­дуется моль щелочи, т. е. щелочь в этой реакции выступает в качестве расхо­дуемого реагента, а не катализатора:

Гидролиз сложных эфиров в щелочной среде протекает по бимолекуляр­ному ацильному механизму В АС 2 через стадию образования тетраэдрического интермедиата (I). Необратимость щелочного гидролиза обеспечивается прак­тически необратимым кислотно-основным взаимодействием карбоновой кис­лоты (II) и алкоксид-иона (III). Образовавшийся анион карбоновой кислоты (IV) сам является довольно сильным нуклеофилом и потому не подвергается нуклеофильной атаке.

Аммонолиз сложных эфиров. Амиды получают с помощью аммонолиза сложных эфиров. Например, при действии водного аммиака на диэтилфумарат образуется полный амид фумаровой кислоты:

При аммонолизе сложных эфиров аминами с низкой нуклеофильностью последние предварительно превращают в амиды щелочных или щелочно-зе­мельных металлов:

Амиды карбоновых кислот: номенклатура; строение амидной группы; кислотно–основные свойства; кислотный и щелочной гидролиз; расщепление гипобромитами и азотистой кислотой; дегидратация в нитрилы; химическая идентификация.

Амидами называются функциональные производные карбоновых кислот обшей формулы R-С(О)-NH 2- n R" n , где п = 0-2. В незамещенных амидах ацильный остаток соединен с незамещенной аминогруппой, в N-замещенных амидах один из атомов водорода замещен одним алкильным или арильным радикалом, в N,N-замещенных - двумя.

Соединения, содержащие одну, две или три ацильные группы, присоеди­ненные к атому азота, носят родовое название амиды (соответственно первич­ные, вторичные и третичные). Названия первичных амидов с незамещенной группой - NH 2 производят от названий соответствующих ацильных радикалов заменой суффикса -оил (или -ил) на -амид. Амиды, образованные от кислот с суффиксом -карбоновая кислота, получают суффикс -карбоксамид. Амиды сульфоновых кислот также называют по соответствующим кислотам, исполь­зуя суффикс -сулъфонамид.

Названия радикалов RCO-NH- (как и RSО 2 -NH-) образуют от назва­ний амидов, изменяя суффикс -амид на -амидо-. Они применяются в том слу­чае, если в остальной части молекулы имеется более старшая группа или заме­щение происходит в более сложной структуре, чем радикал R:

В названиях N-замещенных первичных амидов RCO-NHR" и RCO-NR"R" (а также подобных сульфонамидов) названия радикалов R" и R" указывают перед названием амида с символом N-:

Амиды такого типа часто называют вторичными и третичными амидами, что ИЮПАК не рекомендуется.

N-Фенилзамещенные амиды получают в названиях суффикс -анилид. По­ложение заместителей в остатке анилина указывается цифрами со штрихами:

Сохранились, кроме того, полусистематические названия, в которых суффикс -амид соединен с основой латинского названия карбоновой кислоты (формамид, ацетамид), а также некоторые тривиальные названия, такие, как «анилиды» (ацилированные анилины) или «толуидиды» (ацилированные толуидины).

Амиды представляют собой кристаллические вещества с относительно вы­сокими и четкими температурами плавления, что позволяет использовать не­которые из них в качестве производных для идентификации карбоновых кис­лот. В редких случаях являются жидкостями, например, амиды му­равьиной кислоты - формамид и N,N-диметилформамид - известные диполярные апротонные растворители. Низшие амиды хорошо растворимы в воде.

Амиды являются одними из самых устойчивых к гидролизу функциональ­ных производных карбоновых кислот, благодаря чему широко распростране­ны в природе. Многие амиды применяются в качестве лекарственных средств. Уже около века используются в медицинской практике парацетамол и фенаце­тин, являющиеся замещенными амидами уксусной кислоты.

Строение амидов. Электронное строение амидной группы в значительной степени сходно со строением карбоксильной группы. Амидная группа являет­ся p,π-сопряженной системой, в которой неподеленная пара электронов атома азота сопряжена с электронами π-связи С=O. Делокализация электронной плотности в амидной группе может быть представлена двумя резонансными структурами:

За счет сопряжения связь С-N в амидах имеет частичнодвоесвязанный характер, длина ее существенно меньше длины одинарной связи в аминах, тогда как связь С=O несколько длиннее, чем связь С=O в альдегидах и кетонах. Амидная группа из-за сопряжения имеет плоскую конфигурацию . Ниже приведены геометрические параметры молекулы N-замещенного амида, уста­новленные с помощью рентгеноструктурного анализа:

Важным следствием частично двоесвязанного характера связи С-N явля­ется довольно высокий энергетический барьер вращения вокруг этой связи, например, для диметилформамида он составляет 88 кДж/моль. По этой при­чине амиды, имеющие у атома азота разные заместители, могут существовать в виде π-диастереомеров. N-Замещенные амиды существуют преимущественно в виде Z-изомеров:

В случае N,N-дизамещенных амидов соотношение Е- и Z-изомеров зави­сит от объема радикалов, соединенных с атомом азота. Стереоизомеры амидов конфигурационно неустойчивы, их существование доказано в основном фи­зико-химическими методами, в индивидуальном виде они выделялись лишь в отдельных случаях. Это связано с тем, что барьер вращения для амидов все-та­ки не такой высокий, как у алкенов, у которых он составляет 165 кДж/моль.

Кислотно-основные свойства. Амиды обладают слабыми как кислотны­ми, так и основными свойствами . Основность амидов лежит в пределах значе­ний Рk BH + от -0,3 до -3,5. Причиной пониженной основности аминогруппы в амидах является сопряжение неподеленной пары электронов атома азота с карбонильной группой. При взаимодействии с сильными кислотами амиды протонируются по атому кислорода как в разбавленных, так и в концентриро­ванных растворах кислот. Такого рода взаимодействие лежит в основе кислот­ного катализа в реакциях гидролиза амидов:

Незамещенные и N-замещенные амиды проявляют слабые NH-кислот­ные свойства , сравнимые с кислотностью спиртов и отщепляют протон только в реакциях с сильными основаниями.

Кислотно-основное взаимодействие лежит в основе образования амидами межмолекулярных ассоциатов , существованием которых объясняются высо­кие температуры плавления и кипения амидов. Возможно существование двух типов ассоциатов: линейных полимеров и циклических димеров. Преоблада­ние того или иного типа определяется строением амида. Например, N-метилацетамид, для которого предпочтительна Z-конфигурация, образует линейный ассоциат, а лактамы, имеющие жестко зафиксированную E-кон­фигурацию, образуют димеры:

N, N-Дизамещенные амиды образуют димеры за счет диполь-дипольного взаимодействия 2х полярных молекул:

Реакции ацилирования. Вследствие наличия в сопряженной системе ами­дов сильной электронодонорной аминогруппы электрофильность карбониль­ного атома углерода, а следовательно, и реакционная способность амидов в реакциях ацилирования очень низкая. Низкая ацилирующая способность амидов объясняется также и тем, что амид-ион NH 2 - - плохая уходящая груп­па. Из реакций ацилирования значение имеет гидролиз амидов, который можно проводить в кислой и щелочной средах. Амиды гид­ролизуются намного труднее, чем другие функциональные производные кар­боновых кислот. Гидролиз амидов проводится в более жестких условиях по сравнению с гидролизом сложных эфиров.

Кислотный гидролиз амидов - необратимая реакция, приводящая к обра­зованию карбоновой кислоты и аммониевой соли:

В большинстве случаев кислотный гидролиз амидов протекает по меха­низму бимолекулярного кислотного ацилирования А АС 2 , т. е. похож на механизм кислотного гидролиза сложных эфиров. Необратимость реакции обусловлена тем, что аммиак или амин в кислой среде превращаются в ион аммония, не обладающий нуклеофильными свойствами:

Щелочной гидролиз тоже необратимая реакция; в результате ее образуют­ся соль карбоновой кислоты и аммиак или амин:

Щелочной гидролиз амидов, как и гидролиз сложных эфиров, протекает по тетраэдрическому механизму В АС 2 . Реакция начинается с присо­единения гидроксид-иона (нуклеофила) к электрофильному атому углерода амидной группы. Образовавшийся анион (I) протонируется по атому азота, и далее в биполярном ионе (II) формируется хорошая уходящая группа - моле­кула аммиака или амина. Полагают, что медленная стадия - распад тетраэдрического интермедиата (II).

Для анилидов и других амидов с электроноакцепторными заместителями у атома азота распад тетраэдрического интермедиата (I) может проходить через образование дианиона (II):

Расщепление азотистой кислотой. При взаимодействии с азотистой кис­лотой и другими нитрозирующими агентами амиды превращаются в соответ­ствующие карбоновые кислоты с выходами до 90%:

Дегидратация. Незамещенные амиды под действием оксида фосфора(V) и некоторых других реагентов (РОС1 3 , РС1 5 , SOCl 2) превращаются в нитрилы:

47. Карбоновые кислоты: галогенирование по Геллю-Фольгарду-Зелинскому, использование реакции для синтеза a-гидрокси и a-аминокислот.

Галогенирование алифатических карбоновых кислот.

Алифатические карбоновые кислоты галогенируются в α-положение хло­ром или бромом в присутствии каталитических количеств красного фосфора или галогенидов фосфора (реакция Гелля-Фольгарда-Зелин­ского ). Например, при бромировании гексановой кислоты в присутствии красного фосфора или хлорида фосфора(III) с высоким выходом образуется 2-бромогексановая кислота, например:

Бромированию подвергается не сама карбоновая кислота, а образующий­ся из нее in situ хлорангидрид. Хлорангидрид обладает более сильными, чем карбоновая кислота, СН-кислотными свойствами и легче образует енольную форму.

Енол (I) присоединяет бром с образованием галогенопроиз­водного (II), которое в дальнейшем отщепляет галогеноводород и превращает­ся в α-галогенозамещенный галогенангидрид (III). На последнем этапе проис­ходит регенерирование галогенангидрида незамещенной карбоновой кислоты.

Из образующихся α-галогенозамещенных кислот с помощью реакций нук­леофильного замещения синтезируют другие гетерофункциональные кислоты.

Сложные эфиры – типичные электрофилы. Из-за +М-эффекта атома кислорода, связанного с углеводородным радикалом, они проявляют менее выраженный электрофильный характер по сравнению с галогенангидридами и ангидридами кислот:

Электрофильность эфиров увеличивается, если углеводородный радикал образует с атомом кислорода сопряженную систему, т. н. активированные эфиры:

Сложные эфиры вступают в реакции нуклеофильного замещения.

1. Гидролиз сложных эфиров проходит как в кислой, так и в щелочной среде.

Кислотный гидролиз сложных эфиров – последовательность обратимых превращений, противоположных реакции этерификации:

Механизм этой реакции включает протонирование атома кислорода карбонильной группы с образованием карбкатиона, который реагирует с молекулой воды:

Щелочной гидролиз. Гидролиз в присутствии водных растворов щелочей проходит легче, чем кислотный потому, что гидроксид-анион более активный и менее объемный нуклеофил, чем вода. В отличие от кислотного, щелочной гидролиз необратим:

Щелочь выступает не в роли катализатора, а в роли реагента. Гидролиз начинается с нуклеофильной атаки гидроксид-ионом атома углерода карбонильной группы. Образуется промежуточный анион, который отщепляет алкоксид-ион и превращается в молекулу карбоновой кислоты. Алкоксид-ион, как более сильное основание, отрывает протон от молекулы кислоты и превращается в молекулу спирта:

Щелочной гидролиз необратим потому, что карбоксилат-анион имеет высокую делокализацию отрицательного заряда и не восприимчив к атаке спиртового гидроксила.

Часто щелочной гидролиз сложных эфиров называют омылением. Термин произошел от названия продуктов щелочного гидролиза жиров – мыла.

2. Взаимодействие с аммиаком (иммонолиз) и его производными протекает по механизму, аналогичному щелочному гидролизу:

3. Реакция переэтерификации (алкоголиз сложных эфиров) катализируется как минеральными кислотами, так и шеломами:

Для смешения равновесия вправо отгоняют более летучий спирт.

4. Сложноэфирная конденсация Кляйзена характерна для эфиров карбоновых кислот, содержащих атомы водорода в α-положении. Реакция протекает в присутствии сильных оснований:

Алкоксид-ион отщепляет протон от α-углеродного атома молекулы эфира. Образуется мезомерно стабилизированный карбанион (I), который, выступая в роли нуклеофила, атакует атом углерода карбонильной группы второй молекулы эфира. Образуется продукт присоединения (II). Он отщепляет алкоксид-ион и превращается в конечный продукт (III). Таким образом, всю схему механизма реакции можно разделить на три стадии:

Если в реакцию вступают два сложных эфира, содержащие α-атомы водорода, то образуется смесь четырех возможных продуктов. Реакция используется для промышленного получения ацетоуксусного эфира.

5. Восстановление сложных эфиров:

Первичные спирты образуются при действии газообразного водорода в присутствии скелетного никелевого катализатора (никель Ренея).

6. Действие магнийорганических соединений с последующим гидролизом приводит к образованию третичных спиртов.

Гидролиз сложных эфиров катализируется как кислотами, так и основаниями. Кислотный гидролиз сложных эфиров проводят обычно при нагревании с соляной или серной кислотой в водной или водно-спиртовой среде. В органическом синтезе кислотный гидролиз сложных эфиров чаще всего применяется для моно- и диалкилзамещенных малоновых эфиров (глава 17). Моно- и дизамещенные производные малонового эфира при кипячении с концентрированной соляной кислотой подвергается гидролизу с последующим декарбоксилированием.

Для гидролиза, катализируемого основанием, обычно используют водный или водно-спиртовый раствор NaOH или KOH. Наилучшие результаты достигаются при применении тонкой суспензии гидроксида калия в ДМСО, содержащем небольшое количество воды.

Последний способ предпочтителен для омыления сложных эфиров пространственно-затрудненных кислот, другой модификацией этого метода является щелочной гидролиз пространственно-затрудненных сложных эфиров в присутствии 18-краун-6-полиэфира:

Для препаративных целей гидролиз, катализируемый основанием, имеет ряд очевидных преимуществ по сравнению с кислотным гидролизом. Скорость основного гидролиза сложных эфиров, как правило в тысячу раз выше, чем при кислотном катализе. Гидролиз в кислой среде является обратимым процессом, в отличие от гидролиза в присутствии основания, который необратим.

18.8.2.А. Механизмы гидролиза сложных эфиров

Гидролиз сложных эфиров чистой водой в большинстве случаев обратимая реакция, приводящая к равновесной смеси карбоновой кислоты и исходного сложного эфира:

Эта реакция в кислой и щелочной средах сильно ускоряется, что связано с кислотно-основным катализом (гл. 3).

Согласно К. Ингольду механизмы гидролиза сложных эфиров классифицируются по следующим критериям:

(1) Тип катализа: кислотный (символ А) или основной (символ В);

(2) Тип расщепления, показывающий, какая из двух -связей С-О в сложном эфире расщепляется в результате реакции: ацил-кислород (индекс АС) или алкил-кислород (индекс АL):

(3) Молекулярность реакции (1 или 2).

Из этих трех критериев можно составить восемь различных комбинаций, которые приведены на схеме 18.1.

Это наиболее часто встречающиеся механизмы. Щелочное омыление практически всегда относится к типу В АС 2. Кислотный гидролиз (а также этерификация) в большинстве случаев имеет механизм А АС 2.

Механизм А АС 1 обычно наблюдается только в сильно кислых растворах (например, в конц. H 2 SO 4), и особенно часто для эфиров пространственно затрудненных ароматических кислот.

Механизм В АС 1 пока неизвестен.

Механизм В АL 2 найден только в случае исключительно сильного пространственно экранированных ацильных групп и нейтрального гидролиза -лактонов. Механизм А AL 2 пока неизвестен.

По механизму А AL 1 обычно реагируют третично-алкильные сложные эфиры в нейтральной или кислой среде. Эти же субстраты в подобных условиях могут реагировать по механизму В АL 1, однако при переходе в чуть более щелочную среду механизм В АL 1 сейчас же сменяется на механизм В АС 2.

Как видно из схемы 18.1, реакции, катализируемые кислотами, обратимы, и из принципа микроскопической обратимости (гл.2) следует, что и катализируемая кислотами этерификация тоже протекает по подобным механизмам. Однако при катализе основаниями равновесие сдвинуто в сторону гидролиза (омыления), поскольку равновесие сдвигается вследствие ионизации карбоновой кислоты. Согласно приведенной схеме в случае механизма А АС 1 группы COOR и COOH протонируются по алкоксильному или гидроксильному атому кислорода. Вообще говоря, с точки зрения термодинамики более выгодно протонирование карбонильного кислорода, группы C=O, т.к. в этом случае положительный заряд может делокализоваться между обоими атомами кислорода:

Тем не менее в небольших количествах в растворе содержится и таутомерный катион - необходимый интермедиат в механизме А АС 1. Оба В1 - механизма (из которых В АС 1 неизвестен) на самом деле вовсе не каталитические, ибо в начале происходит диссоциация нейтрального эфира.

Из восьми ингольдовских механизмов экспериментально доказаны лишь шесть.

Сложными эфирами называются функциональные производные карбоновых кислот общей формулы RC(0)0R".

Способы получения. Наиболее значимым способом получения сложных эфиров является ацилирование спиртов и фенолов различными ацилирующими агентами, например, карбоновой кислотой, хлорангидридами, ангидридами. Они могут быть также получены по реакции Тищенко.

Сложные эфиры с высокими выходами получают путем алкилирования солей карбоновых кислот алкилгалогенидами:

Сложные эфиры образуются в результате электрофильного присоединения карбоновых кислот к алкенам и алкинам. Реакция часто применяется для получения сложных эфиров третичных спиртов, например трет -бутиловых эфиров:

Присоединением уксусной кислоты к ацетилену получают промышленно важный мономер винилацетат, в качестве катализатора используют ацетат цинка на активированном угле:

Гидролиз. Важнейшей из реакций ацилирования является гидролиз сложных эфиров с образованием спирта и карбоновой кислоты:

Реакция осуществляется как в кислой, так и в щелочной среде. Кислотно-катализируемый гидролиз сложных эфиров - реакция, обратная этерификации, протекает по тому же самому механизму Алс 2

Щелочной гидролиз необратим, в процессе реакции на моль эфира расходуется моль щелочи, т. е. щелочь в этой реакции выступает в качестве расходуемого реагента, а не катализатора:

Гидролиз сложных эфиров в щелочной среде протекает по бимолекулярному ацильному механизму ВАС2 через стадию образования тетраэдрического интермедиата (I). Необратимость щелочного гидролиза обеспечивается практически необратимым кислотно-основным взаимодействием карбоновой кислоты (И) и алкоксид-иона (III). Образовавшийся анион карбоновой кислоты (IV) сам является довольно сильным нуклеофилом и потому не подвергается нуклеофильной атаке.

Переэтерификация. С помощью этой реакции осуществляется взаимопревращение сложных эфиров одной и той же кислоты по схеме:

Переэтерификация - обратимый процесс, катализируется как кислотами, так и основаниями, и протекает по тем же механизмам, что и реакции этерификации и гидролиза сложных эфиров. Равновесие смещают общеизвестными приемами, а именно применением избытка спирта-реагента (R"OH на приведенной схеме - для смещения вправо) или отгонкой одного из продуктов реакции, если он - самый низкокипящий компонент. Переэтерификацией, например, получают известный анестетик новокаин (основание) из этилового эфира л-аминобензойной кислоты:

Сложноэфирная конденсация. При конденсации двух молекул сложного эфира в присутствии основного катализатора образуются эфиры β-оксокислот:

Молекула этилацетата обладает слабыми СН-кислотными свойствами за счет индуктивного эффекта сложноэфирной группы и способна взаимодействовать с сильным основанием - этоксид-ионом:


Амиды карбоновых кислот. Способы получения. Строение амидной группы. Кислотно-основные свойства амидов. Кислотный и щелочной гидролиз. Расщепление амидов галогенами в щелочной среде и азотистой кислотой. Дегидратация в нитрилы.

Амидами называются функциональные производные карбоновых кислот обшей формулы R-С(О)-NH2_nR"„, где п = 0-2.

Способы получения. Наиболее важным методом получения амидов является ацилирование аммиака и аминов галогенангидридами, ангидридами и сложными эфирами.

Ацилирование аммиака и аминов галогенангидридами. Реакция ацилирования аммиака и аминов галогенангидридами экзотермична и проводится при охлаждении:

Ацилирование аммиака и аминов ангидридами. Для ацетилирования аминов чаще всего используется самый доступный из ангидридов - уксусный ангидрид:

Аммонолиз сложных эфиров. Амиды получают с помощью аммонолиза сложных эфиров. Например, при действии водного аммиака на диэтилфумарат образуется полный амид фумаровой кислоты:

Строение амидов. Электронное строение амидной группы в значительной степени сходно со строением карбоксильной группы. Амидная группа является р,л-сопряженной системой, в которой неподеленная пара электронов атома азота сопряжена с электронами л-связи С=0. Делокализация электронной плотности в амидной группе может быть представлена двумя резонансными структурами:

За счет сопряжения связь С-N в амидах имеет частично двоесвязанный характер, длина ее существенно меньше длины одинарной связи в аминах, тогда как связь С=0 несколько длиннее, чем связь С=0 в альдегидах и кетонах. Амидная группа из-за сопряжения имеет плоскую конфигурацию. Ниже приведены геометрические параметры молекулы iV-замещенного амида, установленные с помощью рентгеноструктурного анализа:

Кислотно-основные свойства. Амиды обладают слабыми как кислотными, так и основными свойствами. Основность амидов лежит в пределах значений рА"вн+ от -0,3 до -3,5. Причиной пониженной основности аминогруппы в амидах является сопряжение неподеленной пары электронов атома азота с карбонильной группой. При взаимодействии с сильными кислотами амиды протонируются по атому кислорода как в разбавленных, так и в концентрированных растворах кислот. Такого рода взаимодействие лежит в основе кислотного катализа в реакциях гидролиза амидов:

Реакции ацилирования. Вследствие наличия в сопряженной системе амидов сильной электронодонорной аминогруппы электрофильность карбонильного атома углерода, а следовательно, и реакционная способность амидов в реакциях ацилирования очень низкая. Низкая ацилирующая способность амидов объясняется также и тем, что амид-ион NH2- - плохая уходящая группа. Из числа реакций ацилирования практическое значение имеет гидролиз амидов, который можно проводить в кислой и щелочной средах. Амиды гидролизуются намного труднее, чем другие функциональные производные карбоновых кислот. Гидролиз амидов проводится в более жестких условиях по сравнению с гидролизом сложных эфиров.

Кислотный гидролиз амидов - необратимая реакция, приводящая к образованию карбоновой кислоты и аммониевой соли:

Щелочной гидролиз тоже необратимая реакция; в результате ее образуются соль карбоновой кислоты и аммиак или амин:

Расщепление азотистой кислотой. При взаимодействии с азотистой кислотой и другими нитрозирующими агентами амиды превращаются в соответствующие карбоновые кислоты с выходами до 90%:


Угольная кислота и ее функциональные производные; фосген, хлоругольные эфиры, карбаминовая кислота и ее эфиры (уретаны). Карбамид (мочевина), основные и нуклеофильные свойства. Гидролиз мочевины. Ацилмочевины (уреиды), уреидокислоты. Взаимодействие мочевины с азотистой кислотой и гипобромитами. Гуанидин, основные свойства.

Угольная кислота традиционно не относится к органическим соединениям, но она сама и ее функциональные производные имеют определенное сходство с карбоновыми кислотами и их производными, поэтому и рассматриваются в настоящей главе.

Двухосновная угольная кислота - неустойчивое соединение, легко распадается на диоксид углерода и воду. В водном растворе углекислого газа лишь 0,1% его существует в виде угольной кислоты. Угольная кислота образует два ряда функциональных производных - полные (средние) и неполные (кислые). Кислые эфиры, амиды и другие производные нестабильны и разлагаются с выделением диоксида углерода:

Полный хлорангидрид угольной кислоты - фосген СОС1 2 - низкокипящая жидкость с запахом прелого сена, очень ядовит, вызывает отек легких, образуется в качестве вредной примеси при фотохимическом окислении хлороформа в результате неправильного хранения последнего.

В промышленности фосген получают радикальным хлорированием оксида углерода (II) в реакторе, заполненном активированным углем:

Фосген, подобно хлорангидридам карбоновых кислот, обладает высокой ацилирующей способностью, из него получают многие другие функциональные производные угольной кислоты.

При взаимодействии фосгена со спиртами образуются сложные эфиры двух типов - полные (карбонаты) и неполные (хлороугольные эфиры, или хлороформиаты), последние одновременно являются и сложными эфирами, и хлорангидридами. В качестве акцептора хлороводорода и нуклеофильного катализатора при этом используют третичные амины или пиридин.

Карбаминовая кислота - неполный амид угольной кислоты - неустойчивое соединение, распадается с образованием аммиака и диоксида углерода:

Эфиры карбаминовой кислоты - карбаматы, или уретаны, - устойчивые соединения, получаемые в результате присоединения спиртов к изоцианатам или ацилированием аммиака и аминов соответствующим хлороформиатом:

Мочевина (карбамид) - полный амид угольной кислоты - впервые была выделена из мочи И. Руэлем (1773). Она является важнейшим конечным продуктом белкового обмена у млекопитающих; взрослый человек выделяет в сутки 25-30 г мочевины. Мочевина была впервые синтезирована Ф. Вёлером (1828) при нагревании цианата аммония:

Этот синтез был первым примером получения органического вещества из неорганического соединения.

В промышленности мочевину получают из аммиака и диоксида углерода при повышенных давлении и температуре (180-230 °С, 150-200 атм):

Мочевина обладает слабыми основными свойствами (р.йГвн+0,1), образует соли с сильными кислотами. Соли азотной и щавелевой кислот нерастворимы в воде.

Мочевина протонируется по атому кислорода, а не азота. Это, вероятно, связано с делокализацией неподеленных пар электронов атомов азота за счет р,π-сопряжения.

В кипящей воде мочевина гидролизуется с образованием аммиака и диоксида углерода; кислоты и основания катализируют эту реакцию:

Первичными продуктами, образующимися при нагревании мочевины, являются аммиак и изоциановая кислота. Изоциановая кислота может тримеризоваться в циануровую кислоту или конденсироваться со второй молекулой мочевины с образованием биурета. В зависимости от скорости нагрева доминирует тот или иной путь разложения мочевины:

Действие гипогалогенитов также приводит к разложению мочевины. В зависимости от условий могут образовываться азот или гидразин; последний именно так получают в промышленности:

Мочевина проявляет нуклеофильные свойства также в реакциях алкилирования и ацилирования. Алкилирование мочевины в зависимости от алкилирующего агента может приводить к О- и TV-алкильным производным:

Гуанидин, или иминомочевину (H 2 N) 2 C=NH, в промышленности получают сплавлением мочевины с нитратом аммония или при нагревании эфиров ортоугольной кислоты с аммиаком:

Гуанидин - бесцветное кристаллическое вещество, обладает сильными основными свойствами. Высокая основность на уровне гидроксидов щелочных металлов обусловлена полной делокализацией положительного заряда в симметричном катионе гуанидиния:

Остатки гуанидина и бигуанидина содержатся в некоторых природных соединениях и лекарственных веществах.