Рнк получает наследственную информацию. Что такое транскрипция в биологии и как она происходит Какой процесс называют транскрипцией

1. Инициация - первый этап транскрипции, в ходе которого происходит связывание РНК-полимеразы с промотором и образование первой межнуклеотидной связи.

У бактерий холофермент РНК-полимераза непосредственно узнает определенные последовательности нуклеотидных пар в составе промотора: последовательность 5-ТАТААТ-3 (расположена на расстоянии 10 нуклеотидов от точки начала транскрипции и называется боксом Прибнова) и последовательность 5-ТТГАЦА-3 (удалена от точки начала транскрипции на 35 нуклеотидов). В некоторых оперонах, например в лактозном, необходимо предварительное взаимодействие с промотором дополнительного белка (САР изменяет структуру промотора, резко повышая его сродство к РНК-полимеразе).

РНК-полимеразы эукариот не способны самостоятельно связываться с промоторами транскрибируемых генов. В присоединении к транскриптонам РНК-полимераз принимают участие общие факторы транскрипции (TF). Они отличаются от σ-факторов прокариот тем, что могут связываться с ДНК независимо от РНК-полимеразы. Полимеразы I, II и III требуют присутствия разных факторов транскрипции, обозначаемых TF I, TF II и TF III соответственно. Промоторы эукариот устроены более сложно, чем прокариотические, и состоят из нескольких элементов. Из низ самым близким к точке начала транскрипции является ТАТА-домен, называемый также доменом Хогнесса. Затем следуют домены ЦААТ и ГЦ. Промоторы эукариот могут содержать различные комбинации этих элементов, но ни один из них не встречается во всех промоторах. Домен ЦААТ играет существенную роль в инициации транскрипции, ТАТА и ГЦ, по-видимому, выполняют вспомогательные функции.

Связавшись с промотором, РНК-полимераза вызывает локальную денатурацию ДНК, т. е. разделение цепей ДНК на протяжении примерно 15 нуклеотидных пар. Образуется транскрипционный «глазок». Первым в строящуюся цепь РНК включается пуриновый нуклеотид - АТФ или ГТФ, при этом все три его фосфатных остатка сохраняются. После образования первой фосфодиэфирной связи σ-фактор у бактерий теряет связь с ферментом, и оставшийся core -фермент начинает перемещаться по ДНК. РНК-полимераза эукариот после инициации транскрипции также теряет связь с транскрипционными факторами и перемещается по ДНК самостоятельно.

2. Элонгация - последовательное удлинение растущей цепи РНК. Перемещаясь вдоль двойной спирали ДНК, РНК-полимераза непрерывно раскручивает спираль впереди того участка, где происходит синтез РНК . На короткое время образуется так называемый открытый комплекс, внутри которого возникает РНК-ДНК-спираль длиной около 20 нуклеотидов
(рис. 30). Затем фермент (с помощью специального сайта) вновь закручивает


Рис. 30. Элонгация транскрипции

ДНК позади участка полимеризации. РНК-транскрипт выводится из комплекса через особый канал, свойственный РНК-полимеразе.

Скорость синтеза РНК у бактерий составляет около 30 нуклеотидов в секунду, однако она не постоянна и может несколько снижаться. Такие периоды называют паузами транскрипции.

Показано, что еще до образования гибрида РНК-ДНК РНК-полимераза переводит ДНК из В-формы в А-форму. В ней плоскости азотистых оснований не перпендикулярны оси спирали, а наклонены на 20 0 к перпендикуляру. Вероятно, это облегчает разъединение двух соседних азотистых оснований в цепи ДНК. Параметры РНК-ДНК-спирали также практически полностью идентичны характеристикам А-формы ДНК.

3. Терминация (окончание транскрипции) определяется особой нуклеотидной последовательностью ДНК, расположенной в зоне терминатора оперона.

В бактериальных оперонах выделяют два типа терминаторов:

- ρ (ро) - независимые терминаторы (I типа);

- ρ - зависимые терминаторы (II типа).

Рис. 31. ρ- независимая терминация транскрипции у бактерий

ρ-независимые терминаторы состоят из последовательностей, представляющих собой инвертированный повтор - палиндром (рис. 31), и располагаются за 16-20 нуклеотидных пар от точки терминации. Палиндромы (последовательности, которые читаются одинаково слева направо и справа налево) ρ- независимых терминаторов содержат большое количество Г-Ц-повторов. За этим участком на матричной цепи расположена олиго (А) - последовательность (4-8 адениловых нуклеотидов подряд). Транскрипция в области палиндрома приводит к тому, что в получившемся РНК-транскрипте быстро образуется устойчивый элемент вторичной структуры - «шпилька» - спирализованная область, содержащая комплементарные

Г-Ц-пары. «Шпилька» нарушает прочность связи ДНК-РНК в открытом комплексе. Кроме этого транскрипция олиго(А)-последовательности в матричной цепи ведет к образованию участка ДНК-РНК-гибрида, составленного из непрочных А-У пар, что также способствует разрушению контакта между ДНК и РНК.

ρ-зависимые терминаторы. Одним из факторов транскрипции прокариот является белок ρ . ρ -фактор - это имеющий четвертичную структуру белок, обладающий АТФ-азной активностью. Он способен связываться с 5-концом синтезируемой РНК длиной около 50 нуклеотидов. ρ -фактор движется по РНК с такой же скоростью, с которой РНК-полимераза движется по ДНК. Вследствие того что в терминаторе много Г-Ц-пар (с тремя водородными связями), РНК-полимераза в области терминатора замедляет ход, ρ -фактор ее догоняет, изменяет конформацию фермента, и синтез РНК прекращается (рис. 32).

На терминаторах обоих типов происходят три ключевых события:

Останавливается синтез РНК;

Цепь РНК освобождается от ДНК;

РНК-полимераза освобождается от ДНК.

Экспрессия всех генов начинается с транскрипции их нуклеотидной последовательности. Транскрипция - это процесс перевода информации, записанной на языке последовательности дезоксирибонуклеотидов в смысловой цепи ДНК на язык последовательности рибонуклеотидов в мРНК. При этом определенный участок одной из двух цепей ДНК (антисмысловой) используется как матрица для синтеза РНК путем комплементарного спаривания оснований.

Ферментами, катализирующими процесс транскрипции, служат ДНК-зависимые РНК-полимеразы. Причем у прокариот, например, в клетках кишечной палочки обнаружен лишь один тип этого фермента, который синтезирует все три типа РНК (мРНК, тРНК, рРНК). В отличие от них эукариоты имеют три разные ДНК-зависимые РНК-полимеразы, каждая из которых ответственна за транскрипцию генов, кодирующих разные типы клеточных РНК. Наилучшим образом процесс транскрипции, а также его ферментативное оснащение изучены у прокариот. Бактериальные РНК-полимеразы - это сложные белки, состоящие из нескольких разных субъединиц. Наиболее изученный фермент - холофермент РНК-полимераза E. coli, который содержит пять разных полипептидных субъединиц: две a-цепи, одну b- и одну b’-цепи, s- и w-цепи. Альтернативная форма фермента, называемая кором или миниферментом , лишена s-субъединицы. Кор-фермент катализирует большинство реакций транскрипции ДНК в РНК, однако не может инициировать синтез РНК в нужном месте, поскольку не способен узнавать промоторные сайты. Точное связывание и инициация в промоторах происходят только после добавления к кор-ферменту sd-субъединицы и образования холофермента.

Как и другие матричные процессы, транскрипция включает 3 стадии: инициацию, элонгацию и терминацию.

Инициация транскрипции . Для этого процесса необходимы: холофермент, специальная последовательность нуклеотидов в ДНК (промотор) и набор нуклеозидтрифосфатов. Транскрипция инициируется при образовании стабильного комплекса между холоферментом и специфической последовательностью, называемой промотором и располагающейся в начале всех транскрипционных единиц. Промотор - это участок молекулы ДНК, состоящий примерно из 40 пар нуклеотидов и расположенный непосредственно перед участком инициации транскрипции. В нем различают две важные и достаточно консервативные по составу последовательности. Одна из них состоит из шести или семи нуклеотидов (чаще ТАТААТ) и расположена на расстоянии примерно 10 нуклеотидов от первого транскрибируемого нуклеотида (+1); этот сигнал обычно обозначают как-10-последовательность, или Прибнов-Бокс- в честь ее первооткрывателя. В данном сайте РНК-полимераза связывается с ДНК. Вторая последовательность расположена на расстоянии ~ 35 нуклеоти-дов до сайта инициации и служит участком распознавания промотора РНК-полимеразой (рис. 3.1).


Когда РНК-полимераза связывается с промотором, происходит локальное расплетение двойной спирали ДНК и образуется открытый промоторный комплекс. В нем происходит копирование последовательности нуклеотидов смысловой, или (+)-цепи ДНК, имеющей направление 5→3’. При этом синтез мРНК всегда начинается с нуклеотидов А или G. Вторая, антисмысловая цепь ДНК, служит матрицей для синтеза цепочки РНК (рис. 3.2).

Транскрипция аналогична репликации в том смысле, что порядок присоединения рибонуклеотидов определяется комплементарным спариванием оснований (рис. 3.2). После формирования первых нескольких фосфодиэфирных связей (обычно 5- 10) d-субъединица отделяется от инициирующего комплекса, и дальнейшая транскрипция осуществляется с помощью кор-фермента.

Элонгация транскрипции . Растущая цепь РНК остается связанной с ферментом и спаренной своим растущим концом с участком матричной цепи. Остальная часть образовавшейся цепи не связана ни с ферментом, ни с ДНК. По мере продолжения транскрипции движущийся вдоль цепи ДНК корфермент действует подобно застежке «молния», расплетая двойную спираль, которая замыкается позади фермента, и восстанавливается ее исходная дуплексная структура. «Раскрытая» ферментом область ДНК простирается всего на несколько пар нуклеотидов (рис. 3.3).

Наращивание РНК идет в направлении от 5’- к 3’-концу вдоль матричной (-) цепи, ориентированной в направлении 3’→5’, т. е. антипараллельно. Транскрипция непрерывно продолжается до тех пор, пока фермент не достигнет сайта терминации транскрипции.

Терминация транскрипции . Последовательности ДНК, являющиеся сигналами остановки транскрипции, называются транскрипционными терминаторами. Они содержат инвертированные повторы, благодаря чему 3’-концы РНК-транскриптов складываются с образованием шпилек разной длины (рис. 3.4).

Обнаружены два типа сигналов терминации - r-зависимый и r- независимый терминаторы. r - это олигомерный белок, прочно связывающийся с РНК и в этом состоянии гидролизующий АТР до ADP и неорганического фосфата. В одной из моделей действие r-белка объясняется тем, что он связывается с синтезируемой цепью РНК и перемещается вдоль нее в направлении 5’→3’ к месту синтеза РНК; необходимая для его перемещения энергия выделяется при гидролизе АТР. Если r-белок наталкивается на образующуюся в РНК шпильку, он останавливает полимеразу, которая могла бы продолжить транскрипцию. Механизм r-независимой терминации изучен хуже, в нем остается много неясного.

В большинстве случаев первичные транскрипты, образующиеся описанным выше способом, не являются зрелыми молекулами РНК, а требуют процесса созревания, который называется процессингом РНК. Процессинг сильно отличается для прокариотических и эукариотических РНК.

У прокариот первичные транскрипты, сформированные при транскрипции генов, кодирующих белки, функционируют в качестве мРНК без последующей модификации или процессинга. Причем трансляция мРНК часто начинается даже до завершения синтеза 3’-конца транскрипта. Совсем иная ситуация наблюдается для молекул прокариотических рРНК и тРНК. В этом случае кластеры рРНК- или тРНК-генов часто транскрибируются с образованием единой цепи РНК. Для формирования зрелых функциональных форм должны произойти специфическое надрезание первичных РНК-транскриптов и модификация. Эти молекулярные события и называют процессингом РНК или посттранскрипционной модификацией . Начальное расщепление первичных транскриптов на фрагменты, содержащие либо тРНК, либо 16S-, 23S- , или 5S-рРНК-последовательности, осуществляет эндонуклеаза РНК-аза Ш. Ее мишенями служат короткие дуплексы РНК, образующиеся при внутримолекулярном спаривании оснований в последовательностях, фланкирующих каждый из РНК-сегментов. Эти комплементарные последовательности формируют шпильки, в составе которых РНК-аза вносит разрывы, после чего лишние последовательности спейсерных областей удаляются другими РНК-азами. Молекулы тРНК вначале синтезируются в виде про-тРНК, которая на ~ 20 % длиннее, чем зрелая. Лишние последовательности, расположенные у 5’ и 3’-концов, удаляются рибонуклеазами Q и P. Кроме этого, для образования зрелой функциональной тРНК, по-видимому, должны произойти специфическая модификация оснований и присоединение одного, двух или всех трех нуклеотидов 3’-ССА-конца (акцепторная ветвь).

Созревание РНК у эукариот осуществляется гораздо сложнее. Во-первых, у эукариот существует ядро, которое отделено от цитоплазмы ядерной мембраной. В ядре осуществляется образование первичных транскриптов, которые имеют бульшую длину, чем цитоплазматическая мРНК, участвующая в трансляции. Следовательно, образованию зрелой мРНК у эукариот должно предшествовать удаление интронов из последовательности гяРНК- транскрипта (этот процесс называется сплайсингом от англ. to splice -сплетать, сращивать). После удаления последовательностей, соответствую-щих интронам, происходит соединение участков, которые транскрибированы с экзонов . Сплайсинг катализируется комплексами белков с РНК (мяРНП), которые, взаимодействуя с гяРНК, образуют сплайсому . Полагают, что каталитической активностью в сплайсоме обладает РНК-составляющая. Такие РНК называют рибозимами . Место сплайсинга определяется в сплайсомах с высокой точностью, поскольку ошибка даже в 1 нуклеотид может привести к искажению структуры белка. Для точного узнавания в составе интронов есть специфические последовательности - сигналы.

Кроме сплайсинга, мРНК у эукариот подвергается модификации: на 5’- конце синтезируется «кэп» (шапочка) - структура, представляющая собой метилированный остаток гуанозинтрифосфата, который защищает РНК от гидролиза 5’-экзонуклеазами. На 3’-конце про-мРНК синтезируется полиаденилатная последовательность длиной 150-200 нуклеотидов, которая называется «шлейф». Эти структуры принимают участие в регуляции экспрессии эукариотических генов. Процессинг рРНК и тРНК у эукариот осуществляется аналогично таковому у прокариот.

ДНК - носитель всей генетической информации в клетке - непосредственного участия в синтезе белков не принимает. В клетках животных и растений молекулы ДНК содержатся в хромосомах ядра и отделены ядерной мембраной от цитоплазмы, где происходит синтез белков. К рибосомам - местам сборки белков - высылается из ядра несущий информацию посредник, способный пройтичерез поры ядерной мембраны. Таким посредником является информационная РНК ( и-РНК). По принципу комплементарности она считывается с ДНК при участии фермента, называемого РНК-полимеразой . Процесс считывания (вернее, списывания), или синтеза РНК, осуществляемый РНК-полимеразой, называется транскрипцией (лат. transcriptio - переписывание). Информационная РНК - это однонитевая молекула, й транскрипция идет с одной нити двунитевой молекулы ДНК. Если в транскрибируемой нити ДНК стоит нуклеотид Г, то РНК-полимераза включает в РНК Ц, если стоит Т, включает А, если стоит А, включает у (в состав РНК не входит Т) ( рис. 46). По длине каждая из молекул и-РНК в сотни раз короче ДНК. Информационная РНК является копией не всей молекулы ДНК, а только части ее - одного гена или группы рядом лежащих генов, несущих информацию о структуре белков, необходимых для выполнения одной функции. У прокариот такая, группа генов называется опероном . О том, как гены объединены в оперон и как организовано управление транскрипцией, вы прочтете в в разделе о биосинтезе белков . В начале каждого оперона находится своего рода посадочная площадка для РНК-полимеразы, называемая промотором . Это специфическая последовательность нуклеотидов ДНК, которую фермент узнает благодаря химическому сродству. Только присоединившись промотору, РНК-полимераза способна начать синтез и-РНК. Дойдя до конца оперона, фермент встречает сигнал (в виде определенной последовательности нуклеотидов), означающий конец считывания. Готовая и- РНК отходит от ДНК и направляется к месту синтеза белков. В описанном процессе транскрипции можно выделить четыре стадии:

1) Связывание РНК-полимеразы с промотором;

2) Инициация - начало синтеза. Она заключается в образовании первой фосфодиэфирной связи между АТФ или ГТФ и вторым нуклеотидом синтезирующейся молекулы и-РНК;

3) элонгация - рост цепи РНК, т. е. последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные нуклеотиды в транскрибируемой нити ДНК. Скорость элонгации достигает 50 нуклеотидов в секунду;

4) терминация - завершение синтеза и-РНК.

В биологии процессы транскрипции и трансляции рассматривают в рамках биосинтеза белка. Хотя в процессе транскрипции никакого синтеза белка не происходит. Но без нее невозможна трансляция (т. е. непосредственный синтез белка). Транскрипция предшествует трансляции.

Протекающие в клетках транскрипция и трансляция согласуются с так называемой догмой молекулярной биологии (выдвинутой Ф. Криком в середине XX века): поток информации в клетках идет в направлении от нуклеиновых кислот (ДНК и РНК) к белкам, но никогда наоборот (то есть от белков к нуклеиновым кислотам). Это значит, что нуклеиновая кислота может служить информационной матрицей для синтеза белка, а белок не может выступать таковой для синтеза нуклеиновой кислоты.

Транскрипция

Транскрипция представляет собой синтез молекулы РНК на молекуле ДНК . То есть ДНК служит матрицей для синтеза РНК.

Транскрипция катализируется рядом ферментов, наиболее важный РНК-полимераза. Следует помнить, что ферменты - это в основном белки (это касается и РНК-полимеразы).

РНК-полимераза движется по двойной цепи ДНК, разъединяет цепочки и на одной из них по принципу комплементарности строит молекулу РНК из плавающих в ядре нуклеотидов. Таким образом, РНК по-сути идентична участку другой цепи ДНК (на которой не происходит синтез), так как цепи молекулы ДНК также комплементарны друг другу. Только в РНК тимин заменен на урацил.

Синтез нуклеиновых кислот происходит в направлении от 5"-конца молекул к их 3"-концу. При этом комплементарные цепи всегда антипараллельны (направлены в разные стороны). Поэтому сама РНК синтезируется в направлении 5"→3", но по цепи ДНК движется в ее направлении 3"→5".

Участок ДНК, на котором происходит транскрипция (транскриптон, оперон), состоит из трех частей: промотора, гена (в случае иРНК, вообще - транскрибируемой части) и терминатора.

Для инициации (начала) транскрипции нужны различные белковые факторы, которые прикрепляются к промотору, после чего к ДНК может быть присоединена РНК-полимераза.

Терминация (окончание) транскрипции происходит после того, как РНК-полимераза встретит один из стоп-кодонов.

У клеток эукариот транскрипция происходит в ядре. После синтеза молекулы РНК здесь же подвергаются созреванию (из них вырезаются ненужные участки, молекулы принимают соответствующую им вторичную и третичную структуру). Далее различные типы РНК выходят в цитоплазму, где участвуют в следующем после транскрипции процессе – трансляции.

Трансляция

Трансляция представляет собой синтез полипептидной (белковой) цепи на молекуле информационной (она же матричная) РНК. По-другому трансляцию можно описать как перевод информации, закодированной с помощью нуклеотидов (триплетов-кодонов), в информацию, представленную в виде последовательности аминокислот. Этот процесс протекает при участии рибосом (в состав которых входит рибосомальная РНК) и транспортной РНК. Таким образом, в непосредственном синтезе белка принимают участие все три основных типа РНК .

При трансляции рибосомы насаживаются на начало цепи иРНК и далее движутся по ней в направлении к ее концу. При этом происходит синтез белка.

Внутри рибосомы есть два «места», где могут поместиться две тРНК. Транспортные РНК, заходящие в рибосому, несут одну аминокислоту. Внутри рибосомы синтезируемая полипептидная цепь присоединяется к вновь прибывшей аминокислоте, связанной с тРНК. После чего эта тРНК передвигается на другое «место», из него же удаляется «старая», уже свободная от растущей полипепдидной цепи тРНК. На освободившееся место приходит еще одна тРНК с аминокислотой. И процесс повторяется.

Активный центр рибосомы катализирует образование пептидной связи между вновь прибывшей аминокислотой и ранее синтезированным участком белка.

В рибосому помещаются два кодона (всего 6 нуклеотидов) иРНК. Антикодоны тРНК, заходящих в рибосому, должны быть комплементарны кодонам, на которых «сидит» рибосома. Разным аминокислотам соответствуют разные тРНК (различающиеся своими антикодонами).

Таким образом, каждая тРНК несет свою аминокислоту. При этом следует иметь в виду, что аминокислот, принимающих участие в биосинтезе белка, всего около 20, а смысловых (обозначающих аминокислоту) кодонов около 60-ти. Следовательно, одну аминокислоту могут переносить разные тРНК, но их антикодоны соответствуют одной и той же аминокислоте.

Сначала, установите последовательность этапов биосинтеза белка, начиная с транскрипции. Всю последовательность процессов, происходящих при синтезе белковых молекул, можно объединить в 2 этапа:

  1. Транскрипция.

  2. Трансляция.

Структурными единицами наследственной информации являются гены – участки молекулы ДНК, кодирующие синтез определенного белка. По химической организации материал наследственности и изменчивости про- и эукариот принципиально не отличается. Генетический материал в них представлен в молекуле ДНК, общим является также принцип записи наследственной информации и генетический код. Одни и те же аминокислоты у про — и эукариот шифруются одинаковыми кодонами.

Геном современных прокариотических клеток характеризуется относительно небольшими размерами, ДНК кишечной палочки имеет вид кольца, длиной около 1 мм. Она содержит 4 х 10 6 пар нуклеотидов, образующих около 4000 генов. В 1961 г. Ф. Жакоб и Ж. Моно открыли цистронную, или непрерывную организацию генов прокариот, которые полностью состоят из кодирующих нуклеотидных последовательностей, и они целиком реализуются в ходе синтеза белков. Наследственный материал молекулы ДНК прокариот располагается непосредственно в цитоплазме клетки, где также находятся необходимые для экспрессии генов тРНК и ферменты.Экспрессия- это функциональная активность генов, или выражение генов. Поэтому синтезированная с ДНК иРНК способна сразу выполнять функцию матрицы в процессе трансляции синтеза белка.

Геном эукариот содержит значительно больше наследственного материала. У человека общая длина ДНК в диплоидном наборе хромосом составляет около 174 см. Она содержит 3 х 10 9 пар нуклеотидов и включает до 100000 генов. В 1977 г. была обнаружена прерывистость в строении большинства генов эукариот, получивший название «мозаичный» ген. Для него характерны кодирующие нуклеотидные последовательности экзонные и интронные участки. Для синтеза белка используется только информация экзонов. Количество интронов варьирует в разных генах. Установлено,что ген овальбумина кур включает 7 интронов, а ген проколлагена млекопитающих – 50. Функции молчащей ДНК – интронов окончательно не выяснены. Предполагают, что они обеспечивают: 1) структурную организацию хроматина; 2) некоторые из них, очевидно, участвуют в регуляции экспрессии генов; 3) интроны можно считать запасом информации для изменчивости; 4) они могут играть защитную роль, принимая на себя действие мутагенов.

Транскрипция

Процесс переписывания информации в ядре клетки с участка молекулы ДНК на молекулу мРНК (иРНК) называется транскрипция (лат. Transcriptio – переписывание). Синтезируется первичный продукт гена- мРНК. Это первый этап белкового синтеза. На соответствующем участке ДНК фермент РНК–полимераза узнает знак начала транскрипции – промотр. Стартовой точкой считается первый нуклеотид ДНК, который включается ферментом в РНК-транскрипт. Как правило, кодирующие участки начинаются кодоном АУГ, иногда у бактерий используется ГУГ. Когда РНК-полимераза связывается с промотором, происходит локальное расплетание двойной спирали ДНК и копируется одна из цепей по принципу комплементарности. Синтезируется мРНК, скорость сборки её достигает 50 нуклеотидов в секунду. По мере движения РНК–полимеразы, растёт цепь мРНК, и когда фермент достигнет конца копирующего участка – терминатора , мРНК отходит от матрицы. Двойная спираль ДНК позади фермента восстанавливается.

Транскипция прокариот осуществляется в цитоплазме. В связи с тем, что ДНК целиком состоит из кодирующих нуклеотидных последовательностей, поэтому синтезированная мРНК сразу выполняет функцию матрицы для трансляции (см. выше).

Транскрипция мРНК у эукариот происходит в ядре. Она начинается синтезом больших по размерам молекул — предшественников (про-мРНК), называемых незрелой, или ядерной РНК.Первичный продукт гена- про-мРНК является точной копией транскрибированного участка ДНК, включает экзоны и интроны. Процесс формирования зрелых молекул РНК из предшественников называется процессингом . Созревание мРНК происходит путём сплайсинга – это вырезания ферментами рестриктаз интронов и соединение участков с транскрибируемыми последовательностями экзонов ферментами лигаз. (Рис.).Зрелая мРНК значительно короче молекул-предшественников про – мРНК, размеры интронов в них варьирует от 100 до 1000 нуклеотидов и более. На долю интронов приходится около 80% всей незрелой мРНК.

В настоящее время доказана возможность альтернативного сплайсинга, при котором из одного первичного транскрипта могут удалятся в разных его участках нуклеотидные последовательности и будут образовываться несколько зрелых мРНК. Данный вид сплайсинга характерен в системе генов иммуноглобулинов у млекопитающих, что даёт возможность формировать на основе одного транскрипта мРНК разные виды антител.

По завершению процессинга зрелая мРНК проходит отбор перед выходом из ядра. Установлено, что в цитоплазму попадает всего 5% зрелой мРНК, а остальная часть расщепляется в ядре.

Трансляция

Трансляция (лат. Translatio — передача, перенесение) — перевод информации, заключенной в последовательности нуклеотидов молекулы мРНК,в последовательность аминокислот полипептидной цепи (Рис. 10). Это второй этап белкового синтеза. Перенос зрелой мРНК через поры ядерной оболочки производят специальные белки, которые образуют комплекс с молекулой РНК. Кроме транспорта мРНК, эти белки защищают мРНК от повреждающего действия цитоплазматических ферментов. В процессе трансляции центральная роль принадлежит тРНК, они обеспечивают точное соответствие аминокислоты коду триплета мРНК. Процесс трансляции- декодирования происходит в рибосомах и осуществляется в направлении от 5 к 3 , Комплекс мРНК и рибосом называется полисомой.

В ходе трансляции можно выделить три фазы: инициацию, элонгацию и терминацию.

Инициация.

На этом этапе происходит сборка всего комплекса, участвующего в синтезе молекулы белка. Происходит объединение двух субъединиц рибосом на определённом участке мРНК, присоединение к ней первой аминоацил – тРНК и этим задаётся рамка считывания информации. В молекуле любой м-РНК есть участок, комплементарный р-РНК малой субединицы рибосомы и специфически ею управляемый. Рядом с ним находится инициирующий стартовый кодон АУГ, который кодирует аминокислоту метионин.Фаза инициации завершается образованием комплекса:рибосома, -мРНК- инициирующая аминоацил-тРНК.

Элонгация

— она включает все реакции от момента образования первой пептидной связи до присоединения последней аминокислоты. На рибосоме имеется два участка для связывания двух молекул т-РНК. В одном участке-пептидильном(П) находится первая т-РНК с аминокислотой метионин и с него начинается синтез любой молекулы белка. Во второй участок рибосомы- аминоацильный (А) поступает вторая молекула т-РНК и присоединяется к своему кодону. Между метионином и второй аминокислотой образуется пептидная связь. Вторая т-РНК перемещается вместе со своим кодоном м-РНК в пептидильный центр. Перемещение т-РНК с полипептидной цепочкой из аминоацильного центра в пептидильный сопровождается продвижением рибосомы по м-РНК на шаг, соответствующий одному кодону. Т-РНК, доставившая метионин, возвращается в цитоплазму, амноацильный центр освобождается. В него поступает новая т-РНК с аминокислотой, зашифрованной очередным кодоном. Между третьей и второй аминокислотами образуется пептидная связь и третья т-РНК вместе с кодоном м-РНК перемещается в пептидильный центр.Процесс элонгации, удлинения белковой цепи. Продолжается до тех пор, пока в рибосому не попадёт один из трёх кодонов, не кодирующих аминокислоты. Это кодон — терминатор и для него не существует соответствущей т-РНК, поэтому ни одна из т-РНК не может занять место в аминоацильном центре.

Терминация

– завершение синтеза полипептида. Она связана с узнаванием специфическим рибосомным белком одного из терминирующих кодонов (УАА, УАГ, УГА), когда он будет входить в аминоацильный центр. К рибосоме присоединяется специальный фактор терминации, который способствует разъединению субъединиц рибосомы и освобождению синтезированной молекулы белка. К последней аминокислоте пептида присоединяется вода и её карбоксильный конец отделяется от т-РНК.

Сборка пептидной цепи осуществляется с большой скоростью. У бактерий при температуре 37°С она выражается в добавлении к полипептиду от 12 до 17 аминокислот в секунду. В эукариотических клетках к полипептиду добавляется две аминокислоты в одну секунду.

Синтезированная полипептидная цепь затем поступает в комплекс Гольджи, где завершается построение белковой молекулы (последовательно возникают вторая, третья, четвертая структуры). Здесь же происходит комплексование белковых молекул с жирами и углеводами.

Весь процесс биосинтеза белка представлен в виде схемы: ДНК ® про иРНК ® мРНК ® полипептидная цепь ® белок® комплексование белков и их преобразование в функционально активные молекулы.

Этапы реализации наследственной информации также протекают сходным образом: сначала она транскрибируется в нуклеотидную последовательность мРНК, а затем транслируется в аминокислотную последовательность полипептида на рибосомах с участием тРНК.

Транскрипция эукариот осуществляется под действием трех ядерных РНК-полимераз. РНК-полимераза 1 находится в ядрышках и отвечает за транскрипцию генов рРНК. РНК-полимераза 2 находится в ядерном соке и отвечает за синтез предшественника мРНК. РНК-полимераза 3 –небольшая фракция в ядерном соке, которая осуществляет синтез малых рРНК и тРНК. РНК-полимеразы специфически узнают нуклеотидную последовательность транскрипции-промотор. Эукариотическая мРНК вначале синтезируется в виде предшественницы (про- иРНК), на нее списывается информация с экзонов и интронов. Синтезированная мРНК обладает большими, чем необходимо для трансляции размерами и оказывается менее стабильной.

В процессе созревания молекулы мРНК с помощью ферментов рестриктаз вырезаются интроны, а с помощью ферментов – лигаз сшиваются экзоны. Созревание мРНК называется процессингом, сшивание экзонов называется сплайсингом. Таким образом, зрелая мРНК содержит только экзоны и она значительно короче её предшественницы – про- иРНК. Размеры интронов варьируют от 100 до 10000 нуклеотидов и более. На долю интонов приходится около 80% всей незрелой мРНК. В настоящее время доказана возможность альтернативного сплайсинга, при котором из одного первичного транскрипта могут удаляться в разных его участках нуклеотидные последовательности и будут образовываться несколько зрелых мРНК. Данный вид сплайсинга характерен в системе генов иммуноглобулинов у млекопитающих, что даёт возможность формировать на основе одного транскрипта мРНК разные виды антител. По завершению процессинга зрелая мРНК проходит отбор перед выходом в цитоплазму из ядра. Установлено, что попадает всего 5% зрелой мРНК, а остальная часть расщепляется в ядре. Преобразование первичных транскриптонов эукариотических генов, связанное с их экзон-интронной организацией, и в связи с переходом зрелой мРНК из ядра в цитоплазму, определяет особенности реализации генетической информации эукариот. Следовательно, мозаичный ген эукариот не является геном цистроном, так как не вся последовательность ДНК используется для синтеза белка.