Определить связь между атомами. Типы химических связей: ионная, ковалентная, металлическая. Донорно-акцепторный механизм образования ковалентной связи

Химическая связь – это сила, удерживающая друг с другом частицы, образующие вещество.

В зависимости от частиц, которые удерживают эти силы, связи подразделяются на внутримолекулярные и межмолекулярные.

Внутримолекулярные связи.

  1. Ковалентная связь.

Ковалентная связь – это общая электронная пара у двух атомов неметаллов.

Рассмотрим на примере молекулы водорода (Н 2), в которой как раз реализуется ковалентная связь.

Молекулы водорода состоит из двух атомов водорода (Н), у которых на внешнем энергетическом уровне один электрон:

Атомы стремятся полностью заполнить свои орбитали. Для этого и объединяются два атома. Они делают свои неспаренные электроны общими: и получается общая электронная пара. Электроны стали спаренными:

Эта общая электронная пара и есть ковалентная химическая связь. Ковалентная связь обозначается либо чертой, соединяющей атомы, либо двумя точками, которые обозначают общую электронную пару:

Представьте, что есть два соседа по парте. Это два атома. Им нужно нарисовать картинку, в которой есть красный и синий цвет. У них есть общая пара карандашей (один красный, другой синий) – это общая электронная пара. Оба соседа по парте пользуются этими карандашами. Таким образом эти два соседа связаны общей парой карандашей, т.е. ковалентной химической связью.

Существует два механизма образования ковалентной химической связи.

  1. Обменный механизм образования ковалентной связи.

В таком случае каждый атом предоставляет электроны для образования ковалентной связи. Этот механизм мы и рассмотрели, когда знакомились с ковалентной связью:

  1. Донорно-акцепторный механизм образования ковалентной связи.

В этом случае общая электронная пара, если можно так выразиться, неравноценная.

Один атом имеет НЭП – неподеленную электронную пару (два электрона на одной орбитали). И он предоставляет ее целиком для образования ковалентной связи. Этот атом называется донором – поскольку он предоставляет оба электрона для образования химической связи.

А второй атом имеет только свободную орбиталь. Он принимает электронную пару. Этот атом называется акцептором – он принимает оба электрона.

Классический пример – это образование иона аммония NH 4 + . Он образуется при взаимодействии иона H + и аммиака (NH 3). Катион водорода H + – это пустая s-орбиталь.

Эта частица будет акцептором.

У тома азота в аммиаке есть НЭП (неподеленная электронная пара).

Атом азота в аммиаке будет донором:

В данном случае и синий и красный карандаш принес один сосед по парте. Он «угощает» второго. И они оба пользуются карандашами.

Конкретные реакции, в которых образуется такой ион, будут рассмотрены позже в соответствующих разделах. Пока вам просто нужно запомнить принцип, по которому образуется ковалентная связь по донорно-акцепторному механизму.

Ковалентная связь бывает двух видов. Различают ковалентную полярную и неполярную связи.

Ковалентная полярная связь возникает между атомами неметаллов с разными значениями электроотрицательности. То есть между разными атомами неметаллов.

Атом с большим значением электроотрицательности будет оттягивать общую электронную пару на себя.

Ковалентная неполярная связь возникает между атомами неметаллов с одинаковыми значениями электроотрицательности. Такое условие выполняется, если связь возникает между атомами одного химического элемента-неметалла . Поскольку у разных атомов электроотрицательности могут быть очень близкими друг к другу, но все равно будут отличаться.

Общая электронная пара не будет смещаться ни к одному атому, так как каждый атом «тянет» ее с одинаковой силой: общая электронная пара будет находиться посередине.

И конечно же ковалентная связь может быть одинарной, двойной и тройной:

  1. Ионная связь.

Ионная связь возникает между атомами металла и неметалла. Поскольку у металла и неметалла большая разница в электроотрицательности, электронная пара полностью оттягивается к более электроотрицательному атому – атому неметалла.

Конфигурация полностью заполненного энергетического уровня, достигается не за счет образования общей электронной пары. Неметалл забирает себе электрон металла – заполняет свой внешний уровень. А металлу проще отдать свои электроны (у него их немного) и у него тоже полностью заполненный уровень.

Таким образом металл, отдав электроны, приобретает отрицательный заряд, становится катионом. А неметалл, получив электроны, приобретает отрицательный заря, становится анионом.

Ионная химическая связь представляет собой электростатическое притяжение катиона к аниону .

Ионная связь имеет место в солях, оксидах и гидроксидах металлов. И в других веществах, в которых атом металла связан с атомом неметалла (Li 3 N, CaH 2).

Здесь следует обратить внимание на одну важную особенность: ионная связь имеет место между катионом и анионов во всех солях . Наиболее общим образом мы описываем как связь металл-неметалл. Но необходимо понимать, что это сделано лишь для упрощения. В составе соли может и не быть атома металла. Например, в солях аммония (NH 4 Cl, (NH 4) 2 SO 4 . Ион аммония NH 4 + притягивается к аниону соли – это ионная связь.

Откровенно говоря, нет никакой ионной связи. Ионная связь – это всего лишь крайняя степень ковалентной полярной связи. У любой связи есть свой процент «ионности» – это зависит от разности электроотрицательностей. Но в школьной программе, а тем более в требованиях ЕГЭ ионная и ковалентная связь – это совершенно два разных понятия, которые нельзя смешивать.

  1. Металлическая связь.

Все великолепие металлической связи можно понять лишь вместе с металлической кристаллической решеткой. Поэтому металлическую связь мы рассмотрим позже, когда будем разбирать кристаллические решетки.

Все, что пока нужно знать – это то, что металлическая связь реализуется в простых веществах – металлах.

Межмолекулярные связи.

Межмолекулярные связи гораздо слабее внутримолекулярных, так как в них не замешана общая электронная пара.

  1. Водородные связи .

Водородные связи возникают в вещества, в которых атом водорода связан с атомом с высоким значением электроотрицательности (F, O, Cl, N).

В таком случае связь с атомов водорода становится сильнополярной. Электронная пара смещается от атома водорода к более электроотрицательному атому. Из-за этого смещения, на водороде появляется частичный положительный заряд (δ+), а на электроотрицательном атоме частичный отрицательный заряд (δ-).

Например, в молекуле фтороводорода:

К δ+ одной молекулы притягивается δ- другой молекулы. Это и есть водородная связь. Графически на схеме она обозначается пунктирной линией:

Молекула воды может образовывать четыре водородные связи:

Водородные связи обусловливают более низкие температуры кипения и плавления веществ, между молекулами которых они возникают. Сравните сероводород и воду. В воде есть водородные связи – она жидкость при нормальных условиях, а сероводород – газ.

  1. Силы Ван-дер-Ваальса .

Это очень слабые межмолекулярные взаимодействия. Принцип возникновения такой же, как и у водородных связей. Очень слабые частичные заряды возникают при колебаниях общей электронной пары. И возникают сиюминутные силы притяжения между этими зарядами.

Типы (виды) связи слов в словосочетании

В подчинительном словосочетании одно слово главное, а другое - зависимое (к нему можно задать вопрос от главного слова). Существует три типа связи между словами в словосочетании:

  • Согласование - вид связи, при котором зависимое слово уподобляется в своей форме главному слову.

Примеры: красивая шляпка, об интересном рассказе .

  • Управление - вид связи, при котором зависимое слово употребляется в определенной форме в зависимости от лексико-грамматического значения главного слова.
  • Примыкание - вид связи, при котором зависимость слова выражается лексически, порядком слов и интонацией, без применения служебных слов или морфологического изменения.

Примеры: петь красиво, лежать дрожа .

Классификация словосочетаний по главному слову

Классификация словосочетаний по составу (по структуре)

  • Простые словосочетания, как правило, состоят из двух знаменательных слов.

Примеры: новый дом, человек с седыми волосами (= седоволосый человек) .

  • Сложные словосочетания образуются на основе простых словосочетаний.

Примеры: весёлые прогулки по вечерам, отдыхать летом на юге .

Академическая классификация словосочетаний по составу - более сложна. Помимо простых и сложных словосочетаний, выделяют также комбинированные . Основным критерием этой классификации является способ связи слов в составе словосочетания .

Классификация словосочетаний по степени слитности компонентов

По степени слитности компонентов выделяются словосочетания:

  • синтаксически свободные

Примеры: высокий дом , идти в школу .

  • синтаксически (или фразеологически) несвободные , образующие неразложимое синтаксическое единство и выступающие в предложении в роли одного члена:

Примеры: три сестры , анютины глазки , бить челом .

Примечания

Ссылки

См. также

  • Синтагма (речь)

Wikimedia Foundation . 2010 .

Смотреть что такое "Виды связи слов в словосочетании" в других словарях:

    ГОСТ 7.88-2003: Система стандартов по информации, библиотечному и издательскому делу. Правила сокращения заглавий и слов в заглавиях публикаций - Терминология ГОСТ 7.88 2003: Система стандартов по информации, библиотечному и издательскому делу. Правила сокращения заглавий и слов в заглавиях публикаций оригинал документа: 3.7 аббревиатура (сокращение) (abbreviation): Сложносокращенное слово … Словарь-справочник терминов нормативно-технической документации

    Словосочетание это соединение двух или нескольких слов, связанных по смыслу и грамматически, служащее для расчленённого обозначения единого понятия (предмета, ка­чества предмета, действия и др.). Словосочетание рассматривается как единица… … Википедия

    Часть речи (калька с лат. pars orationis) категория слов языка, определяемая морфологическими и синтаксическими признаками. В языках мира прежде всего противопоставляются имя (которое может делиться далее на существительное, прилагательное и т. п … Википедия

    У этого термина существуют и другие значения, см. Часть речи (значения). Эта статья должна быть полностью переписана. На странице обсуждения могут быть пояснения … Википедия

    У этого термина существуют и другие значения, см. Предложение. Предложение (в языке) это минимальная единица языка, которая представляет собой грамматически организованное соединение слов (или слово), обладающее смысловой и интонационной… … Википедия

    Предложение (в языке) это минимальная единица человеческой речи, которое представляет собой грамматически организованное соединение слов (или слово), обладающее смысловой и интонационной законченностью. («Современный русский язык» Валгина Н. С.) … Википедия

    Предложение (в языке) это минимальная единица человеческой речи, которое представляет собой грамматически организованное соединение слов (или слово), обладающее смысловой и интонационной законченностью. («Современный русский язык» Валгина Н. С.) … Википедия

    Эта статья или раздел описывает некоторое лингвистическое явление применительно лишь к русскому языку. Вы можете помочь Википедии, добавив информацию об этом явлении в других языках и в типологическом освещении … Википедия

    Подчинение, или подчинительная связь отношение синтаксического неравноправия между словами в словосочетании и предложении, а также между предикативными частями сложного предложения. В такой связи один из компонентов (слов либо предложений)… … Википедия

Словосочетание.

С помощью сайт вы легко научитесь определять тип подчинительной связи.

Подчинительная связь – это связь, объединяющая предложения или слова, одно из которых – главное (подчиняющее), а другое - зависимое (подчинённое).

Словосочетание – это соединение двух или нескольких знаменательных слов, связанных друг с другом по смыслу и грамматически.

зеленые глаза, писать письма, трудно передать.

В словосочетании выделяется главное (от которого задается вопрос) и зависимое (к которому задается) слово:

Синий мяч. Отдыхать за городом. Мяч и отдыхать – главные слова.

Ловушка!

Не являются подчинительными словосочетаниями:

1. Сочетание самостоятельного слова со служебным: около дома, перед грозой, пусть поет;

2. Сочетания слов в составе фразеологизмов: бить баклуши, валять дурака, сломя голову;

3. Подлежащее и сказуемое: наступила ночь;

4. Составные словоформы: более светлый, будет ходить;

5. Группы слов, объединенных сочинительной связью: отцы и дети.

Видео о типах подчинительной связи

Если любите формат видео, то можете посмотреть его.

Выделяют три вида подчинительной связи:

тип связи какой частью речи может быть зависимое слово какой вопрос задается к зависимому слову
согласование (при изменении главного слова изменяется зависимое):

морской берег, читающая молодежь, первый снег, мой дом

прилагательное, причастие, порядковое числительное, некоторые разряды местоимений какой?

Вопросы могут изменяться по падежам!

управление (при изменении главного слова зависимое не меняется): существительное или местоимение в косвенном падеже с предлогом или без вопросы косвенных падежей (кого? чего? – о ком? о чем?)

Помни! Предложно-падежная форма существительного может быть обстоятельством, поэтому к этим формам задаются вопросы обстоятельства (см. ниже)

примыкание (зависимое слово – неизменяемая часть речи!):

внимательно слушать, идти не оглядываясь, яйцо всмятку

1. инфинитив

2. деепричастие

3. наречие

4. притяжательные местоимения (его, ее, их)

1. что делать? что сделать?

2. что делая? что сделав?

3. как? где? куда? откуда? когда? зачем? почему?

Различай!

Её пальто – примыкание (чье), увидеть её – управление (кого).

В разрядах местоимений выделяется два омонимичных (одинаковых по звучанию и написанию, но разных по смыслу) разряда. На вопросы косвенных падежей отвечает личное местоимение, и оно участвует в подчинительной связи – управление, а притяжательное отвечает на вопрос чей ? и является неизменяемым, оно участвует в примыкании.

Пойти в сад – управление, пойти туда – примыкание.

Различайте предложно-падежную форму и наречие. У них могут быть одинаковые вопросы! Если между главным словом и зависимым стоит предлог, то перед тобой управление.

Алгоритм действий №1.

1) Определи главное слово, задав вопрос от одного слова к другому.

2) Определи часть речи зависимого слова.

3) Обрати внимание на вопрос, который ты задаешь к зависимому слову.

4) По выявленным признакам определи тип связи.

Разбор задания.

Какой тип связи используется в словосочетании НАЛАВЛИВАТЬ МЕХАНИЧЕСКИ.

Определяем главное слово и задаем от него вопрос: налавливать (как?) механически; налавливать – главное слово, механически – зависимое. Определяем часть речи зависимого слова: механически ­ – это наречие. Если зависимое слово отвечает на вопрос как? и является наречием, то в словосочетании используется связь примыкание.

Алгоритм действий №2.

1. В тексте тебе легче найти сначала зависимое слово.

2. Если тебе необходимо согласование, ищи слово, отвечающее на вопрос какой? чей?

3. Если тебе необходимо управление, ищи существительное или местоимение не в именительном падеже.

4. Если тебе необходимо найти примыкание, ищи неизменяемое слово (инфинитив, деепричастие, наречие или притяжательное местоимение).

5. Установи, от какого слова ты можешь задать вопрос к зависимому слову.

Вам известно, что атомы могут соединяться друг с другом с образованием как простых, так и сложных веществ. При этом образуются различного типа химические связи: ионная, ковалентная (неполярная и полярная), металлическая и водородная. Одно из наиболее существенных свойств атомов элементов, определяющих, какая связь образуется между ними – ионная или ковалентная, - это электроотрицательность, т.е. способность атомов в соединении притягивать к себе электроны.

Условную количественную оценку электроотрицательности дает шкала относительных электроотрицательностей.

В периодах наблюдается общая тенденция роста электроотрица-тельности элементов, а в группах – их падения. Элементы по электроот-рицательностям располагают в ряд, на основании которого можно сравнить электроотрицательности элементов, находящихся в разных периодах.

Тип химической связи зависит от того, насколько велика разность значений электроотрицательностей соединяющихся атомов элементов. Чем больше отличаются по электроотрицательности атомы элементов, образующих связь, тем химическая связь полярнее. Провести резкую границу между типами химических связей нельзя. В большинстве соединений тип химической связи оказывается промежуточным; например, сильнополярная ковалентная химическая связь близка к ионной связи. В зависимости от того, к какому из предельных случаев ближе по своему характеру химическая связь, ее относят либо к ионной, либо к ковалентной полярной связи.

Ионная связь.

Ионная связь образуется при взаимодействии атомов, которые резко отличаются друг от друга по электроотрицательности. Например, типичные металлы литий(Li), натрий(Na), калий(K), кальций (Ca), стронций(Sr), барий(Ba) образуют ионную связь с типичными неметаллами, в основном с галогенами.

Кроме галогенидов щелочных металлов, ионная связь также образуется в таких соединениях, как щелочи и соли. Например, в гидроксиде натрия(NaOH) и сульфате натрия(Na 2 SO 4) ионные связи существуют только между атомами натрия и кислорода (остальные связи – ковалентные полярные).­­­ ­ ­­ ­­ ­

Ковалентная неполярная связь.

При взаимодействии атомов с одинаковой электроотрица-тельностью образуются молекулы с ковалентной неполярной связью. Такая связь существует в молекулах следующих простых веществ: H 2 , F 2 , Cl 2 , O 2 , N 2 . Химические связи в этих газах образованы посредством общих электронных пар, т.е. при перекрывании соответствующих электронных облаков, обусловленном электронно-ядерным взаимодей-ствием, которые осуществляет при сближении атомов.

Составляя электронные формулы веществ, следует помнить, что каждая общая электронная пара – это условное изображение повышенной электронной плотности, возникающей в результате перекрывания соответствующих электронных облаков.

Ковалентная полярная связь.

При взаимодействии атомов, значение электроотрецательностей которых отличаются, но не резко, происходит смещение общей электронной пары к более электроотрицательному атому. Это наиболее распространенный тип химической связи, которой встречается как в неорганических, так и органических соединениях.

К ковалентным связям в полной мере относятся и те связи, которые образованы по донорно-акцепторному механизму, например в ионах гидроксония и амония.

Металлическая связь.


Связь, которая образуется в результате взаимодействия относите-льно свободных электронов с ионами металлов, называются металлической связью. Этот тип связи характерен для простых веществ- металлов.

Сущность процесса образования металлической связи состоит в следующем: атомы металлов легко отдают валентные электроны и превращаются в положительные заряженные ионы. Относительно свобо-дные электроны, оторвавшиеся от атома, перемещаются между положи-тельными ионами металлов. Между ними возникает металлическая связь, т. е. Электроны как бы цементируют положительные ионы кристал-лической решетки металлов.

Водородная связь.


Связь, которая образуется между атомов водорода одной молекулы и атомом сильно электроотрицательного элемента (O, N, F) другой молекулы, называется водородной связью.

Может возникнуть вопрос: почему именно водород образует такую специфическую химическую связь?

Это объясняется тем, что атомный радиус водорода очень мал. Кроме того, при смещении или полной отдаче своего единственного электрона водород приобретает сравнительно высокий положительный заряд, за счет которого водород одной молекулы взаимодействует с атомами электроотрицательных элементов, имеющих частичный отрицательный заряд, выходящий в состав других молекул (HF, H 2­ O, NH 3).

Рассмотрим некоторые примеры. Обычно мы изображаем состав воды химической формулой H 2 O. Однако это не совсем точно. Правильнее было бы состав воды обозначать формулой (H 2 O)n, где n = 2,3,4 и т. д. Это объясняется тем, что отдельные молекулы воды связаны между собой посредством водородных связей.

Водородную связь принято обозначать точками. Она гораздо более слабая, чем ионная или ковалентная связь, но более сильная, чем обычное межмолекулярное взаимодействие.

Наличие водородных связей объясняет увеличения объема воды при понижении температуры. Это связано с тем, что при понижении температуры происходит укрепление молекул и поэтому уменьшается плотность их «упаковки».

При изучении органической химии возникал и такой вопрос: почему температуры кипения спиртов гораздо выше, чем соответствующих углеводородов? Объясняется это тем, что между молекулами спиртов тоже образуются водородные связи.

Повышение температуры кипения спиртов происходит также всле-дствие укрупнения их молекул.

Водородная связь характерна и для многих других органических соединений (фенолов, карбоновых кислот и др.). Из курсов органической химии и общей биологии вам известно, что наличием водородной связи объясняется вторичная структура белков, строение двойной спирали ДНК, т. е. явление комплиментарности.

Кристаллы.

Различают четыре типа химических связей: ионную, ковалентную, металлическую и водородную.

Ионная химическая связь

Ионная химическая связь - это связь, образовавшаяся за счет электростатического притяжения катионов к анионам.

Как вы знаете, наиболее устойчивой является такая электронная конфигурация атомов, при которой на внешнем электронном уровне, подобно атомам благородных газов, будет находиться 8 электронов (или для первого энергетического уровня - 2). При химических взаимодействиях атомы стремятся приобрести именно такую устойчивую электронную конфигурацию и часто достигают этого или в результате присоединения валентных электронов от других атомов (процесса восстановления), или в результате отдачи своих валентных электронов (процесса окисления). Атомы, присоединившие «чужие» электроны, превращаются в отрицательные ионы, или анионы. Атомы, отдавшие свои электроны, превращаются в положительные ионы, или катионы. Понятно, что между анионами и катионами возникают силы электростатического притяжения, которые и будут удерживать их друг около друга, осуществляя тем самым ионную химическую связь.

Так как катионы образуют в основном атомы металлов, а анионы - атомы неметаллов, логично сделать вывод, что этот тип связи характерен для соединений типичных металлов (элементы главных подгрупп I и II групп, кроме магния и бериллия Ве) с типичными неметаллами (элементы главной подгруппы VII группы). Классическим примером является образование галогенидов щелочных металлов (фторидов, хлоридов и др.). Например, рассмотрим схему образования ионной связи в хлориде натрия:

Два разноименно заряженных иона, связанные силами притяжения, не теряют способности взаимодействовать с противоположно заряженными ионами, вследствие чего образуются соединения с ионной кристаллической решеткой. Ионные соединения представляют собой твердые, прочные, тугоплавкие вещества с высокой температурой плавления.

Растворы и расплавы большинства ионных соединений - электролиты. Такой тип связи характерен для гидроксидов типичных металлов и многих солей кислородсодержащих кислот . Однако при образовании ионной связи не происходит идеального (полного) перехода электронов. Ионная связь является крайним случаем ковалентной полярной связи.

В ионном соединении ионы представлены как бы в виде электрических зарядов со сферической симметрией электрического поля, одинаково убывающего с увеличением расстояния от Центра заряда (иона) в любом направлении. Поэтому взаимодействие ионов не зависит от направления, то есть ионная связь, в отличие от ковалентной, будет ненаправленной.

Ионная связь существует также в солях аммония, где нет атомов металлов (их роль играет катион аммония).

Ковалентная химическая связь

Ковалентная химическая связь - это связь, возникаю щая между атомами за счет образования общих электронных пар.

В основе ее описания также лежит представление о приобретении атомами химических элементов энергетически выгодной и устойчивой электронной конфигурации из восьми электронов (для атома водорода из двух). Такую конфигурацию атомы получают не путем отдачи или присоединения электронов, как в случае ионной связи, а посредством образования общих электронных пар. Механизм образования такой связи может быть обменный или донорно-акцепторный.

Обменный механизм действует, когда атомы образуют общие электронные пары за счет объединения неспаренных электронов. Например:

1) Н2 - водород:

Связь возникает благодаря образованию общей электронной пары s-электронами атомов водорода (перекрыванию s-орбиталей):

Связь возникает за счет образования общей электронной пары из s- и р-электронов (перекрывания s-р-орбиталей):


Донорно-акцепторный механизм образования ковалентной связи рассмотрим на классическом примере образования иона аммония NH4+:


Донор имеет электронную пару, акцептор - свободную орбитальную, которую эта пара может занять. В ионе аммония все четыре связи с атомами водорода ковалентные: три образовались благодаря созданию общих электронных пар атомом азота и атомами водорода по обменному механизму, одна образовалась по донорно-акцепторному механизму. Все четыре связи N-Н в катионе аммония равноценны.

Аналогично образуется донорно-акцепторная связь в ионе метиламмония [СН3NH3] + .

Ковалентные связи классифицируют не только по механизму образования общих электронных пар, соединяющих атомы, но и по способу перекрывания электронных орбита-лей, по числу общих электронных пар, а также по смещению их к одному из связанных атомов.

По способу перекрывания электронных орбиталей различают ковалентные связи сигма- и пи.

В молекуле азота одна общая электронная пара образуется за счет сигма-связи (электронная плотность находится в одной области, расположенной на линии, соединяющей ядра атомов; связь прочная).

Две другие общие электронные пары образуются за счет я-связей, то есть бокового перекрывания р-орбиталей в двух областях; пи-связь менее прочна, чем сигма-связь.

В молекуле азота между атомами существует одна сигма-связь и две пи-связи, которые находятся во взаимно перпендикулярных плоскостях (так как взаимодействуют 3 неспаренных р-электрона каждого атома).

Следовательно, о-связи могут образовываться за счет перекрывания электронных орбиталей:

а также за счет перекрывания «чистых» и гибридных орбиталей:

sр 2 -sр 2 (С2Н4) и т. д.

По числу общих электронных пар, связывающих атомы, то есть по кратности, различают ковалентные связи:

1) одинарные:

2) двойные:
СО,

оксид углерода (IV)

3) тройные:
С2Н2
НС=-СН ацетилен

По степени смещенности общих электронных пар к одному из связанных ими атомов ковалентная связь может быть неполярной и полярной. При неполярной ковалентной связи общие электронные пары не смещены ни к одному из атомов, так как эти атомы имеют одинаковую электроотрицательность (ЭО) - свойство оттягивать к себе валентные электроны от других атомов.

Ковалентную химическую связь, образующуюся между атомами с одинаковой электроотрицательностью, называют неполярной.
Посредством ковалентной неполярной связи образованы молекулы простых веществ-неметаллов.

Значения относительной электроотрицательности фосфора и водорода практически одинаковы: ЭО (Н) = 2,1; ЭО (Р) = = 2,1, поэтому в молекуле фосфина РН3 связи между атомом фосфора и атомами водорода ковалентные неполярные.

Ковалентную химическую связь между атомами элементов, электроотрицательности которых различаются, называют полярной

Например:

NH3
аммиак

Азот - более электроотрицательный элемент, чем водород, поэтому общие электронные пары смещаются к его атому.

Следует различать полярность молекулы и полярность связи. Полярность связи зависит от значений электроотрицательности связанных атомов, а полярность молекулы зависит и от полярности связи, и от геометрии молекулы. Например, связи в молекуле углекислого газа С02 будут полярными, а молекула не будет полярной, так как имеет линейное строение.

Молекула воды Н20 полярна, так как образована с помощью двух ковалентных полярных связей Н-> 0 и имеет угловую форму. Валентный угол НОН составляет 104,5°, поэтому у атома кислорода с частичным отрицательным зарядом 6-и двумя неподеленными электронными парами формируется отрицательный полюс молекулы, а у атомов водорода с зарядом 6+ - положительный. Молекула воды - диполь.

Вещества с ковалентной связью характеризуются кристаллической решеткой двух типов:

атомной - очень прочной (алмаз, графит, кварц); молекулярной - в обычных условиях это газы, легколетучие жидкости и твердые, но легкоплавкие или возгоняющиеся вещества (Сl2, Н20, иод I2, «сухой лед» С02 и др.).

Внутримолекулярная ковалентная связь прочная, но межмолекулярное взаимодействие очень слабое, вследствие чего молекулярная кристаллическая решетка непрочная.

Металлическая связь

Связь в металлах и сплавах, которую выполняют относительно свободные электроны между ионами металлов в металлической кристаллической решетке, называют металлической.

Такая связь ненаправленная, ненасыщенная, характеризуется небольшим числом валентных электронов и большим числом свободных орбиталей, что характерно для атомов металлов. Схема образования металлической связи (М - металл):

_
М 0 - nе <-> М n+

Наличием металлической связи обусловлены физические свойства металлов и сплавов: твердость, электрическая проводимость и теплопроводность, ковкость, пластичность, металлический блеск. Вещества с металлической связью имеют металлическую кристаллическую решетку. В ее узлах находятся ионы или атомы металла, между которыми свободно (в пределах кристалла) перемещаются электроны («электронный газ»).

Водородная связь

Химическую связь между положительно поляризованными атомами водорода одной молекулы (или ее части) и отрицательно поляризованными атомами сильно электроотрицательных элементов, имеющих неподеленные электронные пары другой молекулы (или ее части), называют водородной.

Механизм образования водородной связи имеет частично электростатический, частично донорно-акцепторный характер. При наличии такой связи даже низкомолекулярные вещества могут быть при обычных условиях жидкостями (спирт, вода) или легко сжижающимися газами (аммиак, фтороводо-род).

В биополимерах - белках (вторичная структура) имеется внутримолекулярная водородная связь между карбонильным кислородом и водородом аминогруппы.

Молекулы полинуклеотидов - ДНК (дезоксирибонуклеиновая кислота) представляют собой двойные спирали, в которых две цепи нуклеотидов связаны друг с другом водородными связями. При этом действует принцип комплементарности, то есть эти связи образуются между определенными парами, состоящими из пуринового и пиримидинового оснований: против аденинового нуклеотида (А) располагается тиминовый (Т), а против гуанинового (Г) - цитозиновый (Ц).

Вещества с водородной связью имеют молекулярные кристаллические решетки.

Единая природа химической связи

Деление химических связей на типы носит условный характер, так как все они характеризуются определенным единством.

Ионную связь можно рассматривать как предельный случай ковалентной полярной связи.

Металлическая связь совмещает ковалентное взаимодействие атомов с помощью обобществленных электронов и электростатическое притяжение между этими электронами и ионами металлов.

В веществах часто отсутствуют предельные случаи химической связи (или «чистые» химические связи).

Например, фторид лития 1лК относят к ионным соединениям. Фактически же в нем связь на 80% ионная и на 20% ковалентная. Правильнее поэтому, очевидно, говорить о степени полярности (ионности) химической связи.

В ряду галогеноводородов НF - НСl - НВг - HI - НАt степень полярности связи уменьшается, ибо уменьшается разность в значениях электроотрицательности атомов галогена и водорода, и в астатоводороде связь становится почти неполярной (ЭО(Н) = 2,1; ЭО(Аг) = 2,2).

Различные типы связей могут содержаться в одних и тех же веществах, например:

1) в основаниях - между атомами кислорода и водорода в гидроксогруппах связь ковалентная полярная, а между металлом и гидроксогруппой - ионная;

2) в солях кислородсодержащих кислот - между атомами неметалла и кислородом кислотного остатка - ковалентная полярная, а между металлом и кислотным остатком - ионная;

3) в солях аммония, метиламмония и т. д. - между атомами азота и водорода - ковалентная полярная, а между иона-ми аммония или метиламмония и кислотным остатком - ионная;

4) в пероксидах металлов (например, Nа 2 O 2) - связь между атомами кислорода ковалентная неполярная, а между металлом и кислородом - ионная и т. д.

Различные типы связей могут переходить одна в другую:

При электролитической диссоциации в воде ковалент-ных соединений ковалентная полярная связь переходит в ионную;

При испарении металлов металлическая связь превращается в ковалентную неполярную и т. д.

Причиной единства всех типов и видов химических связей служит их одинаковая физическая природа - электронно-ядерное взаимодействие. Образование химической связи в любом случае представляет собой результат электронно-ядерного взаимодействия атомов, сопровождающегося выделением энергии (табл. 7).

Таблица 7 Типы химической связи

1. Часто встречается выражение: «Молекулы благородных газов одноатомны». Насколько оно соответствует истине?

2. Почему, в отличие от большинства элементов-неметаллов, самые яркие представители их - галогены - не образуют аллотропных модификаций?

3. Дайте наиболее полную характеристику химической связи в молекуле азота, используя следующие признаки: ЭО связанных атомов, механизм образования, способ перекрывания электронных орбиталей, кратность связи.

4. Определите тип химической связи и рассмотрите схемы ее образования в веществах, имеющих формулы: Са, СаF2, F2, ОF2.

5. Напишите структурные формулы веществ: СО, СаС2, СS2, FеS2. Определите степени окисления элементов и их валентности (в возможных случаях) в этих веществах.

6. Докажите, что все типы химической связи имеют общую природу.

7. Почему молекулы N2, СО и С2Н2 называют изоэлектронными?

Учебники основные и дополнительные