Нуклеофильное замещение. Реакции нуклеофильного замещения Реакция нуклеофильного замещения с перемещением в аренах

Или замещением уходящей группы, напр. нуклеоф. замещение у насыщ. атома углерода или в ароматич. кольце, нуклеоф. присоединение к карбонильной группе или алкенам и алкинам , нуклеоф. замещение у карбонильного атома углерода , нуклеоф. замещение у атома фосфора .

Наиб. изучены р-ции н у к л е о ф. з а м е щ е н и я у н а с ы щ. а т о м а у г л е р о д а:

Р-ции такого типа обычно используют также для качеств. и количеств. определения понятий, характеризующих нуклеофильные реакции .

В этих р-циях нуклеофилом является частица X:, предоставляющая орг. субстрату пару электронов . Для уходящей со своей парой электронов группы Z: принято назв. н у к л е о-ф у г (от лат. nucleus-ядро и fugio-убегаю). На скорость и механизм р-ции нуклеоф. замещения определяющее влияние оказывают нуклеоф. реакц. способность (или нуклеофиль ность, "нуклеофильная сила") реагента X:, нуклеофугная рсакц. способность (или нуклеофугность) уходящей группы Z:, природа субстрата и условия р-ции (т-ра, р-ритель, давление и т. д.). Нуклеофильность, в отличие от основности, является величиной кинетической, а не термодинамической, т. е. количеств. мерой нуклеоф. реакц. способности служит константа скорости р-ции, а не константа равновесия .

Различают два предельных случая р-ций нуклеоф. замещения-мономол. процесс S N 1 и бимолекулярный (синхронный) S N 2:



Механизм нуклеоф. замещения существенно зависит от природы субстрата и р-рителя. Так, процессы S N 1 реализуются в полярных р-рителях (Н 2 О, СН 3 ОН, АсОН и др.), способствующих гетеролизу связи С-Z, и в р-циях с субстратами , содержащими третичный, аллильный или бен-зильный атом С. Процессы S N 2 в меньшей степени зависят от р-рителя и наиб. характерны для субстратов с первичным атомом С.

При мономол. процессе первоначально под действием р-рителя происходит ионизация субстрата с образованием трехкоординац. карбкатиона и нуклеофуга (эта стадия обычно определяет скорость всего процесса), а затем следует быстрая стадия связывания карбкатиона с нуклеофилом. При этом атака нуклеофила равновероятна с обеих сторон, и в случае асимметрич. реакц. центра обычно наблюдается образование рацематов . При бимол. процессе образуется пятикоординац. переходное состояние, причем атака нуклеофила осуществляется со стороны, противоположной уходящему заместителю, что приводит к обращению конфигурации, напр. т. наз. вальденовское обращение (см. Динамическая стереохимия).

Р-ция S N l обычно имеет суммарный 1-й порядок; скорость ее, как правило, не зависит от природы нуклеофила и его концентрации , но сильно зависит от природы нуклеофуга и р-рителя. Кинетика р-ции S N 2 описывается ур-нием 2-го порядка - первого по субстрату и первого по нуклеофилу. Скорость р-ции в этом случае зависит как от концентрации , так и от хим. природы нуклеофила.

Известно неск. подходов к количеств. оценке нуклеоф. реакц. способности реагента X: на основе корреляц. соотношений как в S N 2-, так и S N 1-процессах. Для р-ций S N 2 в воде или метаноле наиб. широко применяют ур-ние Свена-Скотта lg (k/k 0) = S . n, где k и k 0 -константы скорости р-ции субстрата соотв. с данным нуклеофилом и водой , S- параметр чувствительности субстрата к изменению нуклеофила (S = 1 для стандартного субстрата-СН 3 Вr), и-параметр нуклеофильности реагента (табл. 1).

Табл. 1.-ЗНАЧЕНИЕ ПАРАМЕТРА НУКЛЕОФИЛЬНОСТИ п ДЛЯ НЕКОТОРЫХ РЕАГЕНТОВ (вода , 25 °С)



Для процессов типа S N l справедливо корреляц. ур-ние Ритчи lg(k/k 0) = N + . Оно получено измерением скоростей р-ций с использованием в качестве субстратов карбкатио-нов, стабилизированных арилъными заместителями три-фенилметанового ряда.

Параметр нуклеофильности N + характеризует реакц. способность нуклеофила в определенном р-рителе; в воде величины N + близки к параметрам п.

Величины параметров нуклеофильности могут заметно меняться в зависимости от конкретной нуклеофильной реакции , однако общая тенденция изменения нуклеофильности обычно сохраняется. Так, практически во всех нуклеофильных реакциях ОН - , CN - , RS - , I - и Вr - проявляют себя как сильные нуклеофилы, а Н 2 О, СН 3 ОН, F - , NO - 3 , SО 4 2- -как слабые.

Мерой нуклеофугности могут служить константы скорости сольволиза (протекающего по механизму S N 1) однотипных субстратов , отличающихся лишь природой уходящей группы (табл. 2).

Табл. 2. ОТНОСИТЕЛЬНЫЕ КОНСТАНТЫ СКОРОСТИ СОЛЬВОЛИЗА (k отн) НЕКОТОРЫХ УХОДЯЩИХ ГРУПП [субстрат-Ph(CH 3)CHZ в 80%-ном водном этаноле , 75°С]



К "хорошим" нуклеофугам относят орг. сульфонат-(този-лат, мезилат, трифлат), фторсульфат-(FSО - 3) и перхлорат-анионы(СlO - 4). Ковалентные орг. производные этих анионов широко используют в качестве алкилирующих реагентов-чрезвычайно активных субстратов в нуклеофильных реакциях . Еще более хорошие нуклеофугные частицы-азот из алкилдиазониевых солей (RN + 2), трехвалентный иод (напр., группа IСl 2), вода из протонир. спирта и простой эфир из триалкилоксо ниевых солей ; однако алифатич. субстраты , содержащие в своей структуре эти группы, при комнатной т-ре обычно неустойчивы и используются лишь в качестве активных интермедиатов , генерируемых непосредственно в реакц. среде.

Существует неск. разл. подходов к теоретич. интерпретации понятий нуклеофильности и нуклеофугности и к оценке факторов, влияющих на их величину. Осн. факторы - основность (кислотность), поляризуемость , сольватац. эффекты, величины потенциалов ионизации и окисления , стерич. и электростатич. эффекты, наличие своб. электронной пары у атома , соседнего с нуклеоф. центром, прочность связи с атомом углерода . Следует отметить, что прямой корреляции нуклеофильности с к.-л. одним из этих параметров обычно нет, как нет и корреляции между нуклеофильностью и нуклеофугностью; напр., тиолят-анион RS - -хороший нуклеофил, но слабое основание и "плохая" уходящая группа, гидроксид-анион НО - -хорошее основание и нуклеофил, но плохая уходящая группа. Анионы самых сильных к-т-хлорной и трифторметансульфоновой - хорошие нуклеофу-ги и в то же время способны проявлять нуклеофильные свойства.

Нуклеоф. замещение в алифатич. ряду имеет исключительно важное значение для орг. синтеза, позволяя целенаправленно заменять функц. группы, а также конструировать углеродный скелет молекулы путем использования С-нуклеофилов (напр., металлоорг. соединений).

Н у к л е о ф. з а м е щ е н и е в а р о м а т и ч. р я д у (ароматич. нуклеоф. замещение) обычно сильно затруднено и может протекать по механизмам "присоединение - отщепление" или через промежут. образование дегидробензола (арино-вьш механизм):



В первом случае первоначально происходит присоединение нуклеофила к ароматич. субстрату с образованием промежут. продукта (иногда стабильного - т. наз. комплекс Майзенхаймера), отщепление нуклсофуга от к-рого приводит к конечному продукту замещения. Электроноакцеп-торные заместители в ядре (NO 2 , COR, CN и др.) стабилизируют

Номенклатура:

1) заместительная (систематическая),

2) радикало-функциональная.

Для низших и наиболее распространённых представителей приемлемыми являются и тривиальные названия, например, фтороформ, хлороформ, бромоформ, йодоформ, фторотан.

Строение и свойства

В зависимости от природы галогена от фтора к йоду полярность связи C–Hal уменьшается (так как уменьшается электроотрицательность галогена), но возрастает её поляризуемость и увеличивается длина (так как увеличивается радиус атома галогена), а прочность связи при этом уменьшается.

Так как поляризуемость связи C–I наибольшая, то при растворении йодоалканов в полярных растворителях эта связь легко поляризуется вплоть до гетеролитического разрыва, то есть до гетеролитической диссоциации йодоалкана: R–I ® R + + I - . При этом химические свойства соединений сильно зависят от их поляризуемости.

Реакции нуклеофильного замещения

Нуклеофильные частицы:

- , RO - , - NH 2 , F - , Cl - , Br - , I - , CN - , H - , - CH 2 -R

H 2 O, ROH, NH 3 , RNH 2 , RR ¢NH, H 2 S, RSH

Механизм бимолекулярного нуклеофильного замещения

Механизм мономолекулярного замещения

где II - тесная ионная пара

III - рыхлая ионная пара

IV и V - диссоциированные ионы



Факторы, влияющие на механизм и скорость нуклеофильного замещения

1. Влияние структуры субстрата .

бромметан бромэтан 2-бромпропан

Скорость S N 2-реакции:

,

Поэтому высокая скорость реакций нуклеофильного замещения может быть характерна и для первичных, и для третичных алкилгалогенидов .

В первом случае - за счёт лёгкости взаимодействия по S N 2-механизму (свободный доступ реакционного центра, нет стерических препятствий),

во втором - по S N 1-механизму (лёгкость диссоциации субстратов, стабильность образующегося карбокатиона).

Вторичные алкилгалогениды в большинстве случаев должны реагировать по смешанному механизму, причём скорость реакций у них будет относительно небольшой, так как есть препятствия для протекания и мономолекулярного, и бимолекулярного замещения.

2. Влияние природы нуклеофила.

3. Влияние растворителей и катализаторов.

4. Влияние природы уходящей группы.

Примеры реакций нуклеофильного замещения

1) Гидролиз галогеналканов - это превращение их в спирты по схеме:

R-Х + H 2 O ® R-OH + HХ

Механизм реакции: S N 1или S N 2 - определяется, в основном, структурой субстрата, а также другими факторами. Например, щелочной гидролиз бромэтана (S N 2-механизм):

Кислотный гидролиз 2-бром-2-метилпропана (S N 1-механизм):

2) Алкоголиз галогеналканов - это взаимодействие галогеналканов с алкоголятами металлов (реакция Вильямсона ), приводящее к образованию простых эфиров:

R-Hal + R ¢-O - Na + ® R-O-R ¢ + NaHal

Нуклеофильная частица - алкоголят-анион R ¢-O - .

При этом при синтезе смешанных эфиров (с разными R и R ¢) необходимо осуществить правильный выбор галогеналкана и алкоголята (RHal и R ¢-O - или R ¢Hal и R-O - - в зависимости от структуры углеводородных радикалов) для того, чтобы реакция протекала с наибольшей скоростью, а возможность образования алкена (протекание конкурирующей реакции отщепления) была бы сведена к минимуму .

3) Аммонолиз галогеналканов - это взаимодействие галогеналканов с аммиаком, приводящее к получению аминов (или их солей) - алкилирование аминов по Гофману

R-Х + NН 3 ®[R-NН 3 ] + Х - R-NН 2 + NН 4 Х

4) Замена одного атома галогена на другой :

R-Br + I - ® R-I + Br -

Кислая среда и протонные растворители способствуют замещению атома фтора,

а высокополярные апротонные растворители, наоборот, атома йода, так как нуклеофильность галогенид-ионов уменьшается в ряду I - >Br - >Cl - >F -

5) Взаимодействие с цианидами - это взаимодействие галогеналканов с солями синильной кислоты, приводящее к образованию органических цианидов (нитрилов) или изоцианидов. Цианид-ион является амбидентным нуклеофилом, то есть, способен проявлять свои нуклеофильные свойства, как за счёт атома углерода, так и за счёт атома азота:

- : C ºN ®: C=N : -

Механизм S N 1 - приводит к образованию изоцианидов (изонитрилов):

R + + : C=N : - ® R-N=С :

Механизм S N 2:

При этом образуются цианиды (нитрилы).

6) Взаимодействие с нитритами.

Нитрит-анион также является амбидентным нуклеофилом.

Поэтому его взаимодействие с галогеналканами может привести либо к нитросоединениям, либо к эфирам азотистой кислоты.

При нуклеофильном замещении нуклеофил атакует молекулу субстрата, предоставляя ей для образования новой связи свои электроны. Электроны разрывающейся связи уходят вместе с освобождающимся ионом. Такие ионные реакции идут преимущественно в жидкой фазе, поскольку растворитель стабилизирует образующиеся ионы за счет сольватации, что невозможно в газовой фазе.

Нуклеофильное замещение позволяет вводить в молекулу органического соединения большое количество функциональных групп, способных выступать в роли нуклеофилов. Например:

В роли нуклеофилов могут выступать и нейтральные молекулы, например:

Примеры реакций с участием бромистого этила, в качестве субстрата, приведены ниже:

Особенностью реакций нуклеофильного замещения является то, что они одни из самых распространенных в органической химии, а соответственно одни из самых изученных. В частности изучение кинетики реакции нуклеофильного замещения. Химическая кинетика - это изучение изменения концентрации реагентов или продуктов во времени. Изменение характеризуется производной концентрации по времени dc/dt. Устанавливают взаимосвязь производной с концентрациями реагентов или, при необходимости, с концентрациями продуктов.

Изучение изменения концентрации реагентов во времени в условиях реакции нуклеофильного замещения показало, что возможны два случая:

В первом случае изменение концентрации пропорционально только концентрации субстрата dc/dt = К[галоидный алкил]

Во втором случае изменение концентрации пропорционально концентрации субстрата и концентрации нуклеофильной частицы - dc/dt = К[галоидный алкил]×[нуклеофил]

Механизм, соответствующий первому случаю назван мономолекулярным нуклеофильным замещением и обозначается S N 1 .

Механизм, соответствующий второму случаю назван бимолекулярным нуклеофильным замещением и обозначается S N 2

1.4.2. Механизм S N 1 . Мономолекулярное замещение

По механизму S N 1 , например протекает гидролиз трет -бутилбромида:

В механизме S N 1 различают следующие стадии:

На первой стадии происходит ионизация галогенопроизводного с образованием карбкатиона и бромид-иона. Эта стадия является скоростьлимитирующей и характеризуется наиболее высокой энергией активации:

Бромид-ион образует с молекулами воды водородные связи и тем самым стабилизируется. Образующийся карбкатион также стабилизируется сольватацией растворителем. Но большее значение имеет стабильность самого карбкатиона. Он должен быть стабилизирован внутримолекулярными электронными эффектами, т.н. быть третичным или находиться в сопряжении с π-электронной системой (быть резонансно-стабилизированным).

На второй стадии происходит быстрое взаимодействие карбкатиона с нуклеофилом, в частности с водой.

ядре, их механизм.

7.1. Замещение атомов водорода.

Нуклеофильная атака незамещенного бензольного ядра протекает гораздо труднее, чем электрофильная, что объясняется следующими причинами:

1) π-электронное облако бензольного ядра отталкивает приближающийся нуклеофил (:Nu: -- );

2) π-электронная система бензольного ядра гораздо менее способна к делокализации, а, следовательно, и к стабилизации двух лишних электронов в отрицательно заряженном комплексе (на 5С приходится 6е), чем в положительно заряженном комплексе Уэланда (на 5С - 4е);

3) в реакциях нуклеофильного замещения водорода в бензольном кольце должен вытесняться гидрид-ион Н: -- , который является сильным основанием и обладает большой энергией, т.е. гидрид-ион является плохой уходящей группой в отличие от гораздо лучшей уходящей группы Н + , при электрофильной атаке:

cигма-комплекс

сигма-комплекс

комплекс Уэланда

Однако, при введении электроноакцепторных заместителей в бензольное ядро электронная плотность в кольце понижается настолько, что реакция с нуклеофильными реагентами становится возможной.

При этом электроноакцепторный заместитель (например, нитрогруппа) направляет нуклеофильную атаку в орто- и пара-положения, тогда как в реакциях электрофильного замещения атака происходит в мета-положение и реакция замедляется:

Другие электроноакцепторные заместители (−CN; −COH; −COR; −COOH; −COOR; −CCl 3 и др.)также повышают реакционную способность, но в меньшей степени, чем нитрогруппа.

Так, например, при сплавлении нитробензола с КОН образуется орто-нитрофенол и небольшое количество пара-нитрофенола:

Более предпочтительной является атака в орто-положение, поскольку индуктивный эффект нитрогруппы, действуя на малом расстоянии, создает большую нехватку электронов в орто-, чем в пара-положении.

Механизм реакции

Можно написать и другие граничные структуры, но наиболее важными являются структуры 1в и Шб, в которых отрицательный заряд находится на атоме углерода, непосредственно связанном с группой NO 2 , так как в этом случае можно написать дополнительные граничные структуры 1г и Шг для орто- и пара-положений, в которых отрицательный заряд накапливается на атоме кислорода нитрогруппы.

Это возможно только в том случае, если атакующая группа ОН занимает орто- или пара-положение по отношению к нитрогруппе.

Присутствие двух и особенно трех нитрогрупп в мета-положении по отношению друг к другу еще более способствует реакциям с нуклеофильными реагентами.

Так, например, при взаимодействии мета-динитробензол со щелочью или с амидом натрия происходит замещение одного из атомов водорода, находящихся в орто- или пара-положениях, на группу OH, или на NH 2 :

Образующийся сопряженный карбанион еще более стабилизируется за счет увеличения числа граничных структур вследствие сопряжения с двумя нитрогруппами:

Симметричный тринитробензол реагирует со щелочью с образованием пикриновой кислоты:

Таким образом, замещение атома водорода в ароматических соединениях на нуклеофильные реагенты удается осуществить только при наличии в этих соединениях сильных электроноакцепторных групп, находящихся в мета-положении по отношению друг к другу и направляющих нуклеофильную атаку в орто- и пара-положение по отношению к ним.

Нуклеофильные реакции – гетеролитические реакции органических соединений с нуклеофильными реагентами. К нуклеофилам относятся анионы и молекулы (органические и неорганические), которые в ходе реакции расходуют свою неподеленную пару электронов на образование новой связи.

На скорость и механизм реакции S N определяющее влияние оказывают:

    Нуклеофильная способность (нуклеофильность) реагента Y

    Природа субстрата

    Нуклеофугная способность уходящей группы

    Условия реакции

Нуклеофильность, в отличии от основности, величина кинетическая, а не термодинамическая, т.е. количественной мерой нуклеофильности является константа скорости реакции, а не константа равновесия.

Есть 2 предельных случая S N:

Sn. Квантово-химические представления

S N можно представить как взаимодействие ВЗМО нуклеофила и НСМО субстрата. Энергия взаимодействия:

,– заряды на реакционном центре нуклеофила Y и атоме углерода субстрата, по которому осуществляется атака.

– расстояние между реагирующими центрами.

– коэффициент атомной орбитали атома, принадлежащего нуклеофилу, который является нуклеофильным центром, т.е. характеризует вклад атома нуклеофила в ВЗМО Y.

– характеризует вклад атома углерода (электрофильный центр) в НСМО субстрата.

– изменение резонансного интеграла, характеризующий эффективность перекрывания ВЗМО Y и НСМО субстрата.

,– энергии ВЗМО Y и НСМО субстрата.

В случае S N 1, когда осуществляется взаимодействие катиона и аниона и реакционный центр несет положительный заряд, определяющая – кулоновская составляющая и относительная реакционная способность нуклеофилов увеличиваться симбатно их основности. В этом случае говорят, что реакция идет при зарядовом контроле.

Более сложная ситуация в S N 2. В газовой фазе и апротонных растворителях, где сольватация аниона мала и заряд на нуклеофиле в большей степени локализован, также наблюдается зарядовый контроль. Однако в протонных растворителях (спирты) заряд на нуклеофиле делокализован в результате сольватации. Заряд на реакционном центре также мал. В этом случае роль кулоновского взаимодействия ниже и основной вклад в энергию взаимодействия вносит орбитальная составляющая. Говорят, что реакция идет при орбитальном контроле. Присутствие донора в нуклеофиле увеличивает заряд на реакционном центре, тем самым увеличивается вклад зарядовой составляющей, кроме того введение донорного заместителя приводит к некоторому увеличению энергии ВЗМО нуклеофила и, следовательно, к увеличению орбитальной составляющей. Т.о. введение ЭД в молекулу нуклеофила приводит к увеличению скорости реакции. В ряду галогенов как нуклеофилов кулоновское взаимодействие уменьшается от фтора к йоду, что является следствием уменьшения локализации отрицательного заряда и увеличении расстояния между атомами. В то же время орбитальное взаимодействие увеличивается, т.к. повышается энергия НСМО галогенов (ВЗМО).

В отличии от S Е, где замещению обычно подвергается атом водорода, в S N замещаются функциональные группы (галогены, сульфо-, нитро- и т.д.).