На каком из рисунков показана ионизация ионом. Ионизация и её функции. Образование радиационных дефектов

Ионизация атомов может быть прямой, косвенной или многофотонной. В первом случае атом или молекула при столкновении с фотоном поглощает его энергию и ионизуется. При этом энергия фотона должна превышать энергию ионизации. Во втором случае атом, поглотив энергию фотона, переходит в возбужденное состояние. Если время жизни в возбужденном состоянии достаточно велико, то в результате следующих актов поглощения фотонов также может произойти ионизация атома. Эти процессы можно записать следующим образом:

где обозначают нейтральный, возбужденный и ионизованный атом.

В процессе прямой ионизации должны выполняться законы сохранения энергии и импульса:

где - единичный вектор, определяющий начальное направление светового пучка, и - масса и скорость электрона, М и V - масса и скорость иона. Отделенный от атома электрон движется в направлении, противоположном движению положительного иона . С учетом этого

Значение правой части выражения (28.3) не может превысить единицу; поэтому

Первое из выражений (28.2) можно записать в виде

Это означает, что почти вся энергия кванта передается электрону.

а. Многофотолная ионизация

Наибольший интерес представляет процесс многофотонной ионизации. Его теорию разработали Бебб и Голд , Фелпс , Бункин и Прохоров , Келдыш , Делоне , Гонтье и Траин и др. Согласно классификации Делоне, многофотонная ионизация во многих случаях является прямым, резонансным или многофотонным процессом высокого порядка. В общем случае энергия нескольких или даже 10-20 фотонов не равна точно энергии ионизации. Следовательно, взаимодействие этих фотонов с атомом не может быть резонансным. Вероятность ионизации атома в течение 1 с пропорциональна степени потока фотонов (где - кратность процесса ионизации):

Здесь Пучок рубинового лазера с плотностью мощности эквивалентен потоку фотонов Величина называется эффективным поперечным сечением ионизации порядка. Например, энергия ионизации атома гелия равна 24,58 эВ; энергия одного кванта излучения рубинового лазера - лишь 1,78 эВ, следовательно только одновременное поглощение 14 квантов может обеспечить ионизацию атомов гелия. В табл. 28.2 приведены энергии ионизации некоторых атомов и молекул. Бебб и Голд рассчитали методом теории возмущений эффективные поперечные сечения для ионизации Не и Н; ионизация этих атомов требует одновременного поглощения 7, 8, 9, 13 и 14 квантов излучения рубинового лазера, соответственно. Простейшей аппроксимацией этого процесса является введение перехода дипольного типа и представление электрона, оторванного от атома, в виде плоской волны. Изложить здесь теорию Бебба и Голда невозможно ввиду ее громоздкого характера. Приведем лишь основные результаты работы , которые представлены в виде табл. 28.3. Как видно из таблицы, поперечные сечения многофотонной ионизации чрезвычайно малы. Однако следует помнить о том, что поток фотонов в

Таблица 28.2 (см. скан) Энергии ионизации некоторых атомов и молекул

Таблица 28.3 (см. скан) Эффективные поперечные сечения многофотонной ионизации и пороговые потоки фотонов, необходимые для инициирования пробоя и рассчитанные для плотности газа и воздействия лазерного импульса длительностью 10 нс на объем газа

лазерном пучке может достигать весьма высоких значений. Экспериментальная проверка формулы (28.5) очень; проста. Отложив по осям координат получим прямую, наклон которой определяет

Процесс многофотонной ионизации можно описать теоретически и без помощи теории возмущений и др.). В этом методе, который часто называют методом Рейсса, учитываются лишь два состояния электрона - начальное и конечное. Если под конечным состоянием понимать ионизованный атом, что соответствует изменению энергии электрона от определенного значения до континуума, можно рассчитать эффективные поперечные сечения многофотонной ионизации для многих водородоподобных атомов. Это облегчило расчет зависимости эффективных поперечных сечений от состояния поляризации света ( и др.), результаты которого нашли экспериментальное подтверждение в работах Кагана и др. , Фокса и др. и Сервенана и Айсенора . Теоретические расчеты показывают, что при вероятность ионизации атомов существенно зависит от состояния поляризации света. При более эффективен свет с круговой поляризацией, чем с линейной. При более эффективным становится свет с линейной поляризацией. Для иллюстрации на рис. 28.15 приведен график зависимости от порядка процесса (при ).

Каган и др. наблюдали ионизацию паров цезия второй гармоникой рубинового лазера. Процесс был двухфотонным. Установлено, что эффективность ионизации излучением с круговой

Рис. 28.15. Отношение эффективных поперечных сечений многофотонной ионизации для излучения с круговой и линейной поляризацией в зависимости от числа одновременно поглощаемых квантов излучения неодимового лазера .

поляризацией была в раза выше, чем для линейно-поляризованного излучения. Вскоре Фокс и др. сообщили о трехфотонной ионизации атомов цезия пучком рубинового лазера, при которой свет с круговой поляризацией в два раза эффективнее, чем с линейной. Кроме того, расчеты без применения теории возмущений показали, что зависимость вероятности многофотонной ионизации от потока фотонов может иметь максимумы и минимумы. Особую роль в процессе многофотонной ионизации играет резонансный эффект. Он возникает, когда суммарная энергия нескольких фотонов точно равна энергии электрона в одном из возбужденных состояний. Таким образом, процесс ионизации может быть двухступенчатым. Вначале электрон переходит в возбужденное состояние, а затем полностью отрывается от атома. В исследования резонансных эффектов внесли значительный вклад Делоне и др. , Эванс и Тонеманн и Хелд и др. .


Заряженных частиц в электрическом и магнитном поле, молекулы необходимо предварительно ионизировать. Существует большое число методов ионизации , при этом наиболее часто используются методы электронного или фотонного удара. Очевидно, что когда речь идет о биомакромолекулах,...

Типы ионизации

Процесс ионизации протекает по-разному в зависимости от того с каким зарядом электрон (положительным или отрицательным) в нём участвует. Положительно заряженным ион становится тогда, когда электрон, связанный с атомом или молекулой обладает достаточным количеством энергии, чтобы преодолеть потенциальный электрический барьер, который его удерживал и, таким образом, порвав связь с атомом или молекулой, высвободиться. Количество энергии, затрачиваемое на этот процесс называется энергией ионизации. Отрицательно заряженный ион возникает, когда свободный электрон сталкивается с атомом и затем попадает в энергетическое поле , высвобождая избыток энергии.

В целом, ионизацию можно разделить на два типа - последовательная ионизация и непоследовательная ионизация . В классической физике, может иметь место только последовательная ионизация . Непоследовательная ионизация нарушает некоторые законы классической физики.

Классическая ионизация

С точки зрения классической физики и модели атома Бора, атомная и молекулярная ионизация являются полностью детерминированными, а это значит, что любая проблема может быть определена и решена при помощи вычислений. Согласно классической физике, необходимо, чтобы энергия электрона превосходила энергетическую разницу потенциального барьера, который он пытается преодолеть. В данной концепции это оправдано: как человек не может перепрыгнуть через стену высотой 1 метр, не подпрыгнув в высоту не менее чем на 1 метр, так же и электрон не может преодолеть потенциальный барьер в 13,6 эВ, не обладая как минимум таким же зарядом энергии.

Положительная ионизация

В соответствии с этими двумя принципами, количество энергии, необходимое для высвобождения электрона должно быть больше или равно потенциальной разнице между текущей атомической связью или молекулярной орбиталью и орбиталью самого высокого уровня. Если поглощённая энергия превосходит потенциал, тогда электрон высвобождается и превращается в свободный электрон. Иначе электрон входит в возбуждённое состояние, пока поглощённая энергия не рассеется и электрон войдёт в нейтральное состояние.

Отрицательная ионизация

Согласно этим принципам и учитывая форму потенциального барьера, свободный электрон должен обладать энергией, которая больше или равна потенциальному барьеру, чтобы его преодолеть. Если свободный электрон обладает достаточной энергией для этого, он остаётся с минимальным энергетическим зарядом, остальная энергия рассеивается. Если электрон не обладает достаточной энергией, чтобы преодолеть потенциальный барьер, он может быть движим электростатической силой, описанной Законом Кулона по отношению к потенциальному энергетическому барьеру.

Последовательная ионизация

Последовательная ионизация - это описание того, как происходит ионизация атома или молекулы. Например, ион с зарядом +2 может возникнуть только от иона с зарядом +1 или +3. То есть цифровое обозначение заряда может изменяться последовательно, всегда изменяясь от числа к последующему прилегающему к нему числу.

Квантовая ионизация

В квантовой механике, помимо того, что ионизация может происходить классическим способом, при котором электрон обладает достаточной энергией для преодоления потенциального барьера, есть возможность туннельной ионизации.

Туннельная ионизация

Туннельная ионизация - это ионизация при помощи квантового туннеля. В классической ионизации электрон должен обладать достаточной энергией для преодоления потенциального барьера, но квантовый туннель позволяет электрону свободно двигаться сквозь потенциальный барьер в силу волновой природы электрона. Вероятность возникновения электронного туннеля сквозь барьер в геометрической прогрессии сокращает ширину потенциального барьера. Поэтому электрон с более высоким энергетическим зарядом может преодолевать энергетический барьер, после чего ширина туннеля сокращается и шанс прохождения через него возрастает.

Непоследовательная ионизация

Феномен непоследовательной ионизации имеет место, когда световое электрическое поле становится переменным и сочетается с туннельной ионизацией. Электрон, проходящий через туннель, может вернуться обратно с помощью переменного поля. На этом этапе он может как сочетаться с атомом или молекулой и высвобождать избыток энергии, так и вступать в дальнейшую ионизацию за счёт столкновений с частицами, обладающими высоким зарядом энергии. Эта дополнительная ионизация называется непоследовательной по двум причинам:

  1. Второй электрон перемещается беспорядочно.
  2. Атом или молекула с зарядом +2 может возникнуть прямо от атома или молекулы с нейтральным зарядом, таким образом, заряд, выраженный целым числом, меняется непоследовательно .

Непоследовательную ионизацию часто изучают при низкой напряжённости лазерного поля, поскольку обычно ионизация является последовательной при высокой скорости ионизации.

Явление непоследовательной ионизации легче понять на одномерной модели атома, которая ещё недавно была единственной моделью, которую можно было рассмотреть в числовом выражении. Это происходит, когда момент импульса для обоих электронов остаётся таким низким, что они могут эффективно двигаться в одномерном пространстве и может относиться к линейной поляризации, но не к циркулярной. Можно рассматривать два электрона как двухмерный атом, где происходит одновременная ионизации обоих атомов, а это и есть ионизация одного двухпространственного электрона, который превращается в струю вероятности под углом 45° на двухэлектронной проекции, возникшую от множества заряженных ядер или квадратного центра. С другой стороны последовательная ионизация представляет собой эмиссии с оси x и y, когда двухпространственный гипер-электрон проходит по потенциальным каналам Кулона от гипер-ядер и затем вступает в ионизацию под воздействием гипер-электрического поля под углом 45°.

Энергия ионизации - основная характеристика атома. Именно она определяет природу и прочность которые способен образовывать атом. Восстановительные свойства вещества (простого) также зависят от этой характеристики.

Понятие «энергия ионизации» иногда заменяют понятием «первый ионизационный потенциал» (I1), подразумевая под этим самую маленькую энергию, которая нужна для того, чтобы электрон удалился от свободного атома, когда тот находится в таком состоянии энергии, которое называется низшим.

В частности, для атома водорода так называют энергию, которая требуется для отрыва электрона от протона. Для атомов с несколькими электронами существует понятие второго, третьего и т.д. ионизационных потенциалов.

Энергия ионизации - это сумма, одним слагаемым которой является энергия электрона, а другим - системы.

В химии энергия атома водорода обозначается символом «Ea», а сумму потенциальной энергии системы и энергии электрона можно выразить формулой: Ea= E+T= -Z.e/2.R.

Из этого выражения видно, что стабильность системы напрямую связана с зарядом ядра и расстояния между ним и электроном. Чем меньше это расстояние, чем сильнее заряд ядра, тем сильнее они притягиваются, тем стабильнее и устойчивее система, тем большее количество энергии необходимо потратить на разрыв этой связи.

Очевидно, что по уровню потраченной для разрушения связи энергии можно сравнивать стабильность систем: чем больше энергия, тем стабильнее система.

Энергия ионизации атома - (сила, которая необходима для разрушения связей в атоме водорода) была рассчитана экспериментальным путем. Сегодня ее значение известно точно: 13,6 эВ (электронвольт). Позже ученые, также при помощи целой серии экспериментов, сумели рассчитать энергию, требующуюся для разрушения связи атом - электрон в системах, состоящих из единственного электрона и ядра с зарядом, в два раза превышающим заряд атома водорода. Экпериментальным путем установлено, что в таком случае требуется 54,4 электронвольт.

Известные законы электростатики гласят, что энергия ионизации, необходимой для того, чтобы разорвать связь между противоположенными зарядами (Z и е), при условии, что они расположены на расстоянии R, фиксируется (определяется) таким уравнением: T=Z.e/R.

Такая энергия пропорциональна величине зарядов и, соответственно, находится в обратной зависимости к расстоянию. Это вполне естественно: чем сильнее заряды, тем сильнее силы соединяющие их, тем мощнее усилие требуется приложить, чтобы разрушить связь между ними. Это же касается и расстояния: чем оно меньше, тем сильнее энергия ионизации, тем больше вил придется приложить для разрушения связи.

Это рассуждение объясняет, почему система атомов с сильным зарядом ядра стабильнее и нуждается в большей энергии для отрыва электрона.

Сразу возникает вопрос: "Если только вдвое сильнее, почему энергия ионизации, необходимая для отрыва электрона, увеличивается не в два, а в четыре раза? Почему она равняется удвоенному заряду, взятому в квадрат(54,4/13,6=4)?".

Это противоречие объясняется довольно просто. Если заряды Z и е в системе находятся относительно во взаимном состоянии неподвижности, то энергия (Т) пропорциональна заряду Z, а увеличиваются они пропорционально.

Но в системе, где электрон с зарядом е делает обороты ядра с зарядом Z, а Z усиливается, пропорционально уменьшается радиус вращения R: электрон с большей силой притягивается к ядру.

Вывод очевиден. На энергию ионизации действует заряд ядра, расстояние (по радиусу) от ядра до высшей точки зарядовой плотности внешнего электрона; сила отталкивания между наружными электронами и мера проникающей способности электрона.

Ионизация атомов

Каждый атом состоит из положительно заряженного ядра, в котором сосредоточена почти вся масса атома, и электронов, вращающихся по орбитам вокруг ядра и в совокупности образующих так называемую электронную оболочку атома. Внешний слой оболочки содержит электроны, сравнительно слабо связанные с ядром. При бомбардировке атома частицей, например протоном, один из внешних электронов может быть оторван от атома, и атом превращается в положительно заряженный ион (рис. 6, а). Именно этот процесс и называется ионизацией.

В кристалле полупроводника, где атомы занимают строго определенные положения, в результате ионизации образуются свободные электроны и положительно заряженные ионы (дырки).

Таким образом, возникают избыточные электронно-дырочные пары, которых ранее в кристалле не было. Концентрацию таких неравновесных пар можно даже подсчитать по формуле:

где е - заряд электрона; ц - мощность дозы (плотность потока) радиации; с - коэффициент преобразования, зависящий от вида радиации и ее энергетического спектра; ф - время жизни неосновных носителей заряда.

Значительное увеличение концентрации носителей заряда нарушает функционирование полупроводниковых приборов, особенно работающих на не основных носителях.

Ионизационные токи через p-n-переход при ядерном взрыве могут достигать большой величины (10 6 А/см 2) и приводить к выходу из строя полупроводниковые приборы. Для снижения токов ионизации необходимо по возможности уменьшить габариты p-n-переходов.

Рис.а - ионизация атома; б - кристаллическая решетка до облучения; в- образование радиационного дефекта в кристалле; 1 - нормальное положение атома; 2 - атом смещен в междоузлие; 3 - образовавшаяся вакансия; 4 - бомбардирующая частица

Образование радиационных дефектов

При воздействии на полупроводники ядерных излучений (нейтронов, протонов, гамма-квантов и др.) кроме ионизации, на которую расходуется примерно 99% энергии излучения, происходит образование радиационных дефектов. Радиационный дефект может возникнуть в том случае, если энергия бомбардирующей частицы достаточна для смещения атома из узла кристаллической решетки в междоузлие. Например, атом кремния смещается, если он получает от бомбардирующей частицы энергию примерно 15 - 20 эВ. Эта энергия обычно называется пороговой энергией смещения. На рис. 6, в представлена простейшая схема образования первичных радиационных дефектов в полупроводнике. Налетающая частица 4, взаимодействуя с атомом решетки, смещает его в междоузлие 2. В результате образуется вакансия 3. Вакансия и междоузельный атом - простейшие радиационные дефекты, или, как их еще называют, пары Френкеля. Смещенный атом 2 , если ему передана энергия выше пороговой, может в свою очередь вызывать вторичные смещения. Образовывать новые смещения может также и бомбардирующая частица. Процесс этот будет продолжаться до тех пор, пока частица и смещенный атом не растратят всю свою энергию на ионизацию и смещения или не покинут объем кристалла. Таким образом, при бомбардировке ядерной частицей в кристалле может возникнуть целый каскад атомных смещений, нарушающих его строение.

Энергия, передаваемая атому решетки нейтроном или тяжелой заряженной частицей (ионом, протоном), в случае лобового столкновения рассчитывается на основе закона соударения твердых шаров по формуле:

Закон сохранения энергии

Закон сохранения импульса

Откуда (13)

где m - масса нейтрона; М - масса ядра атома полупроводника; Е m - энергия нейтрона. Из выражения видно, что чем меньше масса ядра атома, с которым сталкивается нейтрон, тем больше энергия, передаваемая этому атому.

При определении кинетической энергии атомов отдачи, возникающих под действием легких заряженных частиц (электронов, позитронов), учитывают электрический потенциал кристаллической решетки и изменение массы частицы в зависимости от се скорости. Для случая облучения быстрыми электронами выражение имеет вид:

где E max - наибольшая кинетическая энергия смещенного атома; Е э - кинетическая энергия электрона; m - масса покоя электрона; с - скорость света; М - масса ядра атома полупроводника.

При облучении полупроводников гамма-квантами вероятность образования смещений в результате непосредственного взаимодействия гамма-квантов с ядрами атомов очень мала. Смещения в данном случае будут возникать за счет электронов, образующихся в полупроводнике под действием гамма-квантов. Следовательно, появление смещений в полупроводнике при облучении гамма-квантами следует рассматривать как вторичный процесс, т.е. вначале образуются быстрые электроны, а затем под их воздействием происходят смещения атомов.

Кроме того, при облучении частицами высоких энергий (нейтроны, протоны, электроны) в кристаллах полупроводников могут образовываться также целые области радиационных нарушений - разупорядоченные области. Происходит это потому, что бомбардирующая частица, обладающая большой кинетической энергией, значительную ее часть передает смещаемому атому, который и производит сильные нарушения. В дальнейшем бомбардирующая частица может вообще оставить кристалл, вылететь из него. Смещенный же атом, обладая большими геометрическими размерами по сравнению с бомбардирующей частицей и, кроме того, являясь электрически заряженным (ион), так как при смещении от него отрывается часть валентных электронов, так свободно, как например нейтрон, вылететь из кристалла не сможет. Этому мешают малые расстояния между атомами в кристалле и электрическое поле. Всю свою огромную кинетическую энергию смещенный атом вынужден тратить в маленьком объеме на расталкивание атомов кристаллической решетки. Так образуется область радиационного нарушения, по форме близкая к сфере или эллипсоиду.

Как установлено, для образования области разупорядочения в кремнии энергия атома отдачи (смещения) должна быть более 5 КэВ. Размеры области будут возрастать с увеличением его энергии. По результатам электронно-микроскопических исследований, размеры областей разупорядочения лежат в пределах 50 - 500?. Установлено, что концентрация носителей заряда в области разупорядочения во много раз меньше, чем в ненарушенной области полупроводника. В результате на границе разупорядоченной области и основной матрицы полупроводника возникает контактная разность потенциалов, и разупорядоченная область окружена электрическим потенциальным барьером, препятствующим переносу носителей заряда.

Смещенные атомы и области разупорядочения относятся к первичным радиационным повреждениям полупроводника. Число их будет возрастать с увеличением потока бомбардирующих частиц. При очень больших потоках (больше 10 23 част/см 2) полупроводник может потерять кристаллическую структуру, его решетка полностью разрушится и он превратится в аморфное тело.

Число первично смещенных атомов в единице объема полупроводника можно оценить приближенно по формуле

где Ф - поток частиц (суммарный); N - число атомов в 1 см 3 полупроводника; у d -поперечное сечение столкновений, вызывающих смещения атомов.

Поперечное сечение столкновений есть некая эффективная площадь, измеряемая в квадратных сантиметрах, характеризующая вероятность столкновения частицы, например нейтрона, с ядром атома вещества. Ядро имеет очень малые размеры по сравнению с атомом. Поэтому вероятность попадания в него очень мала. Сечение столкновений для нейтронов с энергией 1-10 МэВ обычно равно 10 -24 см 2 . Но поскольку в 1 см 3 вещества содержится приблизительно 10 23 атомов, то столкновения происходят довольно часто. Так, на 10 «выстрелов» в 1 см 3 полупроводника приходится примерно одно столкновение (попадание). В соответствии с приведенной формулой при потоке 10 12 нейтр/см 2 в 1 см 3 полупроводника происходит около 10 11 смещений атомов, которые в свою очередь могут вызвать вторичные смещения.

Надо заметить, что первичные радиационные дефекты (междоузельный атом и вакансия) не стабильны. Они вступают во взаимодействие друг с другом или с имеющимися в кристалле примесями и другими несовершенствами. Так образуются более сложные радиационные дефекты, например, для кремния n -типа проводимости, легированного фосфором, наиболее характерны такие радиационные дефекты, как вакансия + атом фосфора (Е-центр), вакансия + атом кислорода (Л-центр), дивакансия (соединение двух вакансий). В настоящее время определено большое количество разнообразных типов радиационных дефектов, которые характеризуются различной термической устойчивостью и способностью влиять на электрические и механические свойства материала. Радиационные дефекты в зависимости от их структуры обусловливают появление в запрещенной зоне полупроводника целого спектра энергетических уровней. Эти уровни являются основной причиной изменения свойств полупроводников при облучении.

Наверно, любой, кто хоть в какой-то степени интересуется точными науками, хоть раз, но задавался вопросом, что такое ионизация? Под данным определением подразумевается эндотермический процесс, в результате которого из электрически нейтральных частиц (атомов, молекул) образуются ионы. Рассмотрим более подробно, что представляет собой данный процесс.

Виды ионизации

Ионизация может протекать по-разному, и в зависимости от этого могут образовываться как положительные, так и отрицательные ионы. Еще со школьной скамьи нам говорили на уроках физики, что каждый электрон удерживается около своих хозяев (атомов) посредством электрического барьера, который не дает им разлететься в разные стороны. За счет него, собственно, и существует сама молекула.

Однако электрон может получить энергию достаточной величины, чтобы разрушить электрический барьер и освободиться от опеки атома или молекулы. В этом случае ион становится положительным. И наоборот, отрицательный ион образуется путем захвата дополнительного электрона. Сила, о которой было упомянуто, это не что иное, как энергия ионизации.

Существует два основных типа этого процесса:

  • последовательная (классическая);
  • непоследовательная (квантовая).

При этом первый тип - это процесс, который протекает согласно известным физическим законам. Квантовая же ионизация может нарушить некоторые классические представления о физике.

По законам классической физики

Согласно законам физики, в классическом понимании в отношении модели атома Бора атомная и молекулярная ионизация являются детерминированными процессами. То есть любую проблему можно определить и решить путем вычислений. Иными словами, чтобы электрону покинуть пределы атома, ему необходима такая энергия, которая превысит значения барьера.

Можно провести сравнение с человеком: чтобы ему перепрыгнуть метровую стену, необходимо подпрыгнуть на такую же высоту или даже больше, чтобы наверняка. В отношении модели Бора то же самое - электрон не сможет вырваться, не превысив препятствие равное 13,6 эВ. Как минимум ему необходимо обладать таким же зарядом энергии.

Но что такое ионизация последовательного типа? Ее суть кроется в самом названии. То есть значение заряда изменяется только последовательно и никак иначе. К примеру, ион может получить заряд +2 лишь от другого иона, у которого это значение равно +1 либо +3. Иными словами изменение заряда происходит на предыдущее или последующее прилегающее число.

Положительные ионы

Согласно рассмотренному выше принципу, энергия, которая будет потрачена на высвобождение электрона, должна равняться иди даже превосходить потенциальную разницу между текущей атомической связью (молекулярная орбиталь) и орбиталью самого высокого уровня.

Поглощенная энергия может быть выше потенциала, тогда для электрона нет никаких препятствий, и он становится свободным. В противном случае частица будет находиться в возбужденном состоянии, пока энергия не рассеется и он не перейдет в нейтральное состояние.

Отрицательные ионы

Как уже известно из описанного выше, что при ионизации такой свободный электрон должен обладать большой энергией или, в крайнем случае, быть такой же силы, как значение барьера, чтобы его преодолеть. И если она у него имеется, то у электрона остается минимальный энергетический заряд, а все остальное рассеивается. В ином случае он становится подвластным электростатической силе описанной законом Кулона в отношении потенциального энергетического барьера.

Квантовый процесс

Генрихом Герцем в 1887 году было установлено, что из тела возможен вылет электронов под воздействием света, что послужило открытием фотоэффекта. Однако это противоречило волновой теории света, которая не в состоянии объяснить происходящие в нем законы, а также разделение энергии в спектре электромагнитного излучения.

13 лет спустя другим физиком-теоретиком из Германии Максом Планком было установлено, что тела способны не только поглощать электромагнитную энергию, но и испускать ее. Причем делается это определенными порциями или квантами. В какой-то степени это объясняло ионизацию атомов.

В 1905 году Альберт Эйнштейн попытался выдвинуть предположение для объяснения квантовой теории. Фотоны, которые могут, как излучаться, так и поглощаться, наделяют электроны достаточной энергией для преодоления потенциального барьера. В этом случае речь идет как раз о квантовой ионизации.

Воздушная среда

Что же относительно ионизации воздуха? Как мы знаем, это та среда, которая необходима для существования всего живого на земле. Причем она содержит различные газы, большая часть из которых - это кислород и азот. В зависимости от территориального расположения состав воздуха различен. К примеру, на морском побережье он разбавлен водными частицами, схожими с плазмой человеческой крови.

Как мы теперь знаем, ионизация - это процесс, при котором образуются положительные и отрицательные ионы. Но что такое ионизация воздуха? Ответ далее. Стоит заметить, что процесс этот происходит под воздействием разного рода факторов:

  • электромагнитного излучения;
  • электрического поля;
  • высокой температуры.

При этом сам процесс может протекать в зависимости от характера образования ионов и быть:

  • естественным;
  • технологическим;
  • искусственным.

Что характерно, положительные ионы вредны для человеческого организма, поскольку могут вызывать утомление, головную боль. Также вследствие поступления недостаточного количества кислорода в кровь учащается пульс и дыхание. Пользу приносят как раз отрицательные ионы.

Польза ионизированного воздуха

Как отмечают многие специалисты, ионизированный воздух положительно сказывается на нашем организме.

Каждый раз при вдохе общее состояние человека улучшается, что приводит к положительным эффектам:

  • повышается уровень работоспособности;
  • укрепляется иммунитет;
  • уходит депрессия;
  • сон приходит в норму.

Теперь уже ясно, что такое ионизация воздуха. В целом, благодаря этому процессу, в помещении создается благоприятный микроклимат. Другие даже считают, что это верное средство по достижению долголетия. Кроме того, данный процесс позволяет устранить табачный дым, грибки с их спорами, а также прочие вирусы, микробы и возбудители некоторых заболеваний.

Естественные и искусственные ионизаторы

Пример естественной ионизации - сама природа, для чего используются растения. И преимущественно это хвойные породы деревьев (сосна, ель). Воздух обогащается ионами в разное время под воздействием следующих факторов:

  • грозы;
  • ультрафиолетовых лучей;
  • в местах дробления воды (водопады);
  • рентгеновского либо теплового излучения.

В середине прошлого столетия известным русским ученым А.Л. Чижевским был разработан аэроионизатор, чтобы проводить искусственную ионизацию воздуха. С его помощью проводились краткие оздоровительные процедуры под чутким присмотром медицинского персонала.

Другой его прибор именуется как люстра Чижевского, который почему-то ошибочно прозвали лампой. Он вырабатывал только отрицательные ионы, но при этом образовывалось много озона - более допустимой нормы.

Водная среда

Теперь пора познакомиться с ионизаций воды. Так же, как и воздух, она является жизненно необходимой средой. На планете воды больше чем суши, все мы на 2/3 состоим из жидкости, и вдобавок многочисленные процессы на земле не обходятся без ее участия. И с исчезновением воды вся жизнь на Земле прекратит свое существование.

В зависимости от источника молекулы воды могут отличаться по разным параметрам, и одним из таковых является водный кластер. Что это такое? Это совокупность молекул, которые соединены между собой посредством водородных связей. Измеряется в герцах (Гц). У различной разновидности воды он следующий:

  • у водопроводной - 106;
  • у дождевой - 119;
  • у вешней - 122;
  • у дистиллированной - 118;
  • у колодезной - 105;
  • у минеральной - 94;
  • у ионизированной - 48.

Именно меньшие размеры кластера позволяют ионизированной воде эффективным образом проникать в обезвоженные ткани тела человека. К тому же у нее очень малое поверхностное натяжение.

Польза ионизированной воды

Что касается функции ионизации, то вода, которая подверглась такому процессу, в такой же степени полезна, как и воздух. Ее можно даже назвать живой, водой и по своей сути это - природный биостимулятор. Благодаря ему происходит активация всех процессов в организме, что приводит к улучшению аппетита, обмена веществ и общего самочувствия.

Помимо этого, можно выделить следующие полезные свойства ионизированной живой воды:

  • Способствует скорейшему заживлению ран.
  • Благоприятно воздействует на кожу, смягчая ее.
  • Разглаживает морщины.
  • Решает проблему перхоти и улучшает внешний вид волос.

В нашем организме постоянно проходит обмен веществ, в результате чего уже старые (мертвые) клетки превращаются в отходы. И исходом метаболизма становятся кислотные отходы, от которых наш организм избавляется через мочеиспускание и потоотделение.

Но что такое ионизация и как все это может быть связано со здоровьем? Дело в том, что накаливающийся мусор может быть и твердым (холестерин, жирные кислоты, камни в почках и так далее). Со временем он накапливается в нашем организме, приводя к старению и различным заболеваниям. Вода, для которой характерен небольшой размер кластера (ионизированная), способствует избавлению от ненужного мусора. Ведь чем меньше кислотных отходов будет в организме, тем медленнее протекает процесс старения.

В то же время такая вода - это не лекарство от всех болезней. Тем не менее регулярное ее употребление поможет омолодить организм, повышая его иммунитет.

Забота о волосах

Наши волосы тоже нуждаются в качественном уходе и защите. Практически все женщины по всему миру тратят определенной время у зеркала с той целью, чтобы привести свою прическу в порядок.

Выше были рассмотрены примеры того, как ионизация благоприятно воздействует на человеческий организм, укрепляя его иммунитет. Теперь же очередь дошла и до ионизации волос. Некоторые производители средств по наведению красоты уже поняли, что к чему и теперь рынок заполнился многочисленными фенами с ионизацией. Что же дает эта новая функция?

Как теперь можно понять существуют не только положительные, но и отрицательные частицы, причем первые плохо сказываются на человеческом организме. Особенно это хорошо заметно на волосах. В качестве примера: накопление положительных ионов приводит к их электризации, сильному распушиванию, и они становятся непослушными.

Отрицательные частицы оказывают благоприятное воздействие: волосы становятся послушными, лучшим образом увлажняются за счет равномерного распределения влаги. Также они приобретают блеск и гладкость. Иными словами, такой процесс, а точнее степень ионизации, это большой плюс для любого человека.