Колебания электрического тока. Т. Электрические колебания. Переменный ток

Это позволяет не учитывать волнового характера процессов и описывать их как электрич. зарядов Q (в ёмкостных элементах цепи) и токов I (в индуктивных и диссипативных элементах) в соответствии с ур-нием непрерывности: I=±dQ/dt. В случае одиночного колебательного контура Э. к. описываются ур-нием:

где L - самоиндукция, С - ёмкость, R - сопротивление, ? - внешняя ЭДС.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ

- электромагнитные колебания в квазистационарных цепях, размеры к-рых малы по сравнению с длиной эл.-магн. волны. Это позволяет не учитывать волнового характера процессов и описывать их как колебания электрич. зарядов (в ёмкостных элементах цепи) и токов I (в индуктивных и диссипативных элементах) в соответствии с ур-нием непрерывности: В случае одиночного колебательного контура Э. к. описываются ур-нием где L-индуктивность, С-ёмкость, R -сопротивление, - переменная внешняя эдс. M. А. Миллер.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


  • ЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ

Смотреть что такое "ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ" в других словарях:

    электрические колебания - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electric oscillations … Справочник технического переводчика

    ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ - многократно повторяющиеся изменения силы тока, напряжения и заряда, происходящие в электрических (см.) и сопровождающиеся соответствующими изменениями магнитных и электрических полей, создаваемых этими изменениями токов и зарядов, в окружающем… … Большая политехническая энциклопедия

    электрические колебания - elektriniai virpesiai statusas T sritis fizika atitikmenys: angl. electric oscillations vok. elektrische Schwingungen, f rus. электрические колебания, n pranc. oscillations électriques, f … Fizikos terminų žodynas

    Уже давно было замечено, что если обмотать стальную иглу проволокой и разрядить через эту проволоку лейденскую банку, то северный полюс не всегда получается на том конце иглы, где его можно было ожидать по направлению разрядного тока и по правилу … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Многократно повторяющиеся изменения напряжения и силы тока в электрич. цепи, а также напряжённостей электрич. и магн. полей в пространстве вблизи проводников, образующих электрич. цепь. Различают собственные колебания, вынужденные колебания и… … Большой энциклопедический политехнический словарь

    Электромагнитные колебания в системе проводников в случае, когда можно не учитывать электромагнитные поля в окружающем пространстве, а рассматривать только движения электрических зарядов в проводниках. Обычно это возможно в так называемых …

    КОЛЕБАНИЯ - КОЛЕБАНИЯ, процессы (в наиболее общем смысле), периодически меняющие свое направление со временем. Процессы эти могут быть весьма разнообразными. Если напр. подвесить на стальной спиральной пружине тяжелый шар, оттянуть его и затем предоставить… … Большая медицинская энциклопедия

    Движения (изменения состояния), обладающие той или иной степенью повторяемости. При К. маятника повторяются отклонения его в ту и другую сторону от вертикального положения. При К. пружинного маятника груза, висящего на пружине,… … Большая советская энциклопедия

    См. Электрические колебания … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Книги

  • Теоретические основы электротехники. Электрические цепи. Учебник , Л. А. Бессонов. Рассмотрены традиционные и новые вопросы теории линейных и нелинейных электрических цепей. К традиционным относятся методы расчета токов и напряжений при постоянных, синусоидальных,…

Механические колебания.

3. Трансформаторы.

Волны.

4. Дифракция волн.

9. Эффект Доплера в акустике.

1.Магнитными явлениями

Индукция магнитного поля прямолинейного проводника с током.

Закон Фарадея

Закон Фарадея электромагнитной индукции записывают в виде следующей формулы:

– это электродвижущая сила, которая действует вдоль любого контура;

Ф в – это магнитный поток, проходящий через поверхность, натянутую на контур.

Для катушки, которая помещена в переменное магнитное поле, закон Фарадея выглядит несколько иначе:

Это электродвижущая сила;

N – это число витков катушки;

Ф в – это магнитный поток, проходящий через один виток.

Правило Ленца

Индукционный ток имеет такое направление, что приращение созданного им магнитного потока через площадь, ограниченную контуро, и приращение потока магнитной индукции внешнего поля противоположны по знаку.

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которое вызвало этот ток.

Самоиндукция

Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока.

Возникающая при этом ЭДС называется ЭДС самоиндукции

Если ток в рассматриваемом контуре по каким-то причинам изменяется, то изменяется и магнитное поле этого тока, а, следовательно, и собственный магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции, которая согласно правилу Ленца препятствует изменению тока в контуре. Данное явление называется самоиндукцией, а соответствующее значение - ЭДС самоиндукции.

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в ней

Индуктивность

Индуктивностью (от латинского inductio - наведение, побуждение), называется величина, характеризующая связь между изменением тока в электрической цепи и возникающей при этом ЭДС (электродвижущей силы) самоиндукции. Индуктивность обозначается большой латинской буквой «L», в честь немецкого физика Ленца. Термин индуктивности предложил в 1886 году Оливер Хевисайд.,

Величина магнитного потока, проходящего через контур, связана с силой тока следующим образом: Φ = LI. Коэффициент пропорциональности L называется коэффициентом самоиндукции контура или просто индуктивностью. Значение индуктивности зависит от размеров и формы контура, а также от магнитной проницаемости среды. Единицей измерения индуктивности является Генри (Гн). Дополнительные величины: мГн, мкГн.

Зная индуктивность, изменение силы тока и время этого изменения, можно найти ЭДС самоиндукции, которая возникает в контуре:

Через индуктивность выражают также энергию магнитного поля тока:

Соответственно чем больше индукция, тем больше магнитная энергия, накапливаемая в пространстве вокруг контура с током. Индуктивность является своеобразным аналогом кинетической энергии в электричестве.

7. Индуктивность соленоида.

L - Индуктивность (соленоида), размерность в CИ Гн

L - Длина (соленоида), размерность в СИ - м

N - Число (витков соленоида

V- Объём (соленоида), размерность в СИ - м3

Относительная магнитная проницаемость

Магнитная постоянная Гн/м

Энергия магнитного поля соленоида

Энергия Wм магнитного поля катушки с индуктивностью L, создаваемого током I, равна

Применим полученное выражение для энергии катушки к длинному соленоиду с магнитным сердечником. Используя приведенные выше формулы для коэффициента самоиндукции Lμ соленоида и для магнитного поля B, создаваемого током I, можно получить:

Диамагнетики

Диамагне́тики - вещества, намагничивающиеся против направления внешнего магнитного поля. В отсутствие внешнего магнитного поля диамагнетики немагнитны. Под действием внешнего магнитного поля каждый атом диамагнетика приобретает магнитный момент I (а каждый моль вещества - суммарный магнитный момент), пропорциональный магнитной индукции H и направленный навстречу полю.

К диамагнетикам относятся инертные газы, азот, водород, кремний, фосфор, висмут, цинк, медь, золото, серебро, а также многие другие, как органические, так и неорганические, соединения. Человек в магнитном поле ведет себя как диамагнетик.

Парамагнетики

Парамагнетики - вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля. Парамагнетики относятся к слабомагнитным веществам, магнитная проницаемость незначительно отличается от единицы

К парамагнетикам относятся алюминий (Al), платина (Pt), многие другие металлы (щелочные и щелочно-земельные металлы, а также сплавы этих металлов), кислород (О2), оксид азота (NO), оксид марганца (MnO), хлорное железо (FeCl2) и др.

Ферромагнетики

Ферромагнетики - вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик - такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля.

Среди химических элементов ферромагнитными свойствами обладают переходные элементы Fe, Со и Ni (3 d-металлы) и редкоземельные металлы Gd, Tb, Dy, Ho, Er.

Вопросы к зачету по разделу «Колебания и волны».

Механические колебания.

1. Колебательное движение

Колебательное движение это движение, точно или приблизительно повторяющееся через одинаковые промежутки времени. Учение о колебательном движении в физике выделяют особо. Это обусловлено общностью закономерностей колебательного движения различной природы и методов его исследования.

Механические, акустические, электромагнитные колебания и волны рассматриваются с единой точки зрения.

Колебательное движение свойственно всем явлениям природы. Внутри любого живого организма непрерывно происходят ритмично повторяющиеся процессы, например биение сердца.

Формула Гюйгенса

4 . Физический маятник

Физическим маятником называется твердое тело, закрепленное на неподвижной горизонтальной ocи (оси подвеса), не проходящей через центр тяжести, и совершающее колебания относительно этой оси под действием силы тяжести. В отличие от математического маятника массу такого тела нельзя считать точечной.

Знак минус в правой части означает то, что сила F направлена в сторону уменьшения угла α. С учетом малости угла α

Для вывода закона движения математического и физического маятников используем основное уравнение динамики вращательного движения

Момент силы: определить в явном виде нельзя. С учетом всех величин, входящих в исходное дифференциальное уравнение колебаний физического маятника имеет вид:

Решение этого уравнения

Определим длину l математического маятника, при которой период его колебаний равен периоду колебаний физического маятника, т.е. или

Из этого соотношения определяем

Резонанс

Резкое возрастание амплитуды вынужденных колебаний при приближении циклической частоты возмущающей силы к собственной частоте колебаний называется резонансом .

Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы.

Автоколебания.

Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Такие системы называются автоколебательными , а процесс незатухающих колебаний в таких системах – автоколебаниями .

На рис. 1.10.1 изображена схема автоколебательной системы. В автоколебательной системе можно выделить три характерных элемента – колебательная система , источник энергии и клапан – устройство, осуществляющее обратную связь между колебательной системой и источником энергии.

Обратная связь называется положительной , если источник энергии производит положительную работу, т.е. передает энергию колебательной системе. В этом случае в течение промежутка времени, пока на колебательную систему действует внешняя сила, направление силы и направление скорости колебательной системы совпадают, в результате в системе происходят незатухающие колебания. Если направления силы и скорости противоположны, то имеет место отрицательная обратная связь , которая только усиливает затухание колебаний.

Примером механической автоколебательной системы может служить часовой механизм (рис. 1.10.2). Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер (якорек) с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменяется пружиной, а маятник – балансиром – маховичком, скрепленным со спиральной пружиной. Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир. Источником энергии – поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь – клапаном, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.

Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике. Автоколебания совершают паровые машины, двигатели внутреннего сгорания, электрические звонки, струны смычковых музыкальных инструментов, воздушные столбы в трубах духовых инструментов, голосовые связки при разговоре или пении и т. д.

Механические колебания.

1. Колебательное движение. Условия возникновения колебаний. Параметры колебательного движения. Гармонические колебания.

2. Колебания груза на пружине.

3. Математический маятник. Формула Гюйгенса.

4. Физический маятник. Период свободных колебаний физического маятника.

5. Превращение энергии в гармонических колебаниях.

6. Сложение гармонических колебаний, происходящих по одной прямой и по двум взаимно-перпендикулярным направлениям. Фигуры Лиссажу.

7. Затухающие механические колебания. Уравнение для затухающих колебаний и его решение.

8. Характеристики затухающих колебаний: коэффициент затухания, время релаксации, логарифмический декремент затухания, добротность.

9. Вынужденные механические колебания. Резонанс.

10. Автоколебания. Примеры автоколебательных систем.

Электрические колебания. Переменный ток.

1. Электрические колебания. Колебательный контур. Формула Томсона.

2. Переменный электрический ток. Рамка, вращающаяся в магнитном поле. Генератор переменного тока.

3. Трансформаторы.

4. Электрические машины постоянного тока.

5. Резистор в цепи переменного тока. Действующее значение ЭДС, напряжения и силы тока.

6. Конденсатор в цепи переменного тока.

7. Катушка индуктивности в цепи переменного тока.

8. Вынужденные колебания в цепи переменного тока. Резонанс напряжений и токов.

9. Закон Ома для цепи переменного тока.

10. Мощность, выделяющаяся в цепи переменного тока.

Волны.

1. Механические волны. Виды волн и их характеристики.

2. Уравнение бегущей волны. Плоские и сферические волны.

3. Интерференция волн. Условия минимума и максимума интерференции.

4. Дифракция волн.

5. Принцип Гюйгенса. Законы отражения и преломления механических волн.

6. Стоячая волна. Уравнение стоячей волны. Возникновение стоячей волны. Собственные частоты колебаний.

7. Звуковые волны. Скорость звука.

8. Движение тел со скоростью большей скорости звука.

9. Эффект Доплера в акустике.

10. Электромагнитные волны. Предсказание и открытие электромагнитных волн. Физический смысл уравнений Максвелла. Опыты Герца. Свойства электромагнитных волн. Шкала электромагнитных волн.

11. Излучение электромагнитных волн. Перенос энергии электромагнитной волной. Вектор Умова-Пойнтинга.

Вопросы к зачёту в 11 классе. Вопросы к выпускному экзамену.

Вопросы к зачету по разделу «Магнетизм».

1.Магнитными явлениями называются любые явления природы связанные с наличием магнитных полей (как статических, так и волн) и неважно где, в космосе или в кристаллах твердого тела или в технике. Магнитные явления не проявляются при отсутствии магнитных полей.

Некоторые примеры магнитных явлений:

Притяжение магнитов друг к другу, получение электрического тока в генераторах, работа трансформатора, северное сияние, радиоизлучение атомарного водорода на длине волны 21 см, спиновые волны, спиновые стекла и др.

1. Электромагнитные волны

2. Закрытый колебательный контур.Формула Томсона.

3. Открытый колебательный контур. Электромагнитные волны.

4. Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине.

5. Воздействие на организм человека переменными электрическими и магнитными полями с лечебной целью.

1. Согласно теории Максвелла переменное электрическое поле представляет собой совокупность переменных взаимно перпендикулярных электрических и магнитных полей, перемещающихся в пространстве со скоростью света

Где и -относительные диэлектрическая и магнитная проницаемости среды.

Распространение электромагнитного поля сопровождается переносом электромагнитной энергии.

Источниками электромагнитного поля (э/м излучения) служат всевозможные переменные токи: переменный ток в проводниках, колебательное движение ионов, электронов и др. заряженных частиц, вращение электронов в атоме вокруг ядра и т.п.

Электромагнитное поле распространяется в виде поперечной электромагнитной волны, состоящей из двух совпадающих по фазе волн-электрической и магнитной.

Длина , период T, частота и скорость распространения волны связаны между собой соотношением

Интенсивность электромагнитной волны или плотность потока электромагнитной энергии пропорциональна квадрату частоты волн.

Источником интенсивных э/м волн должны быть переменные токи высокой частоты, которые называют электрическими колебаниями. В качестве генератора таких колебаний применяется колебательный контур.

2. Колебательный контур состоит из конденсатора и катушки

.

Сначала заряжается конденсатор. Поле внутри него Е=Е m . В послед. момент конденсатор начнет разряжаться. В контуре появится возрастающий ток, а в катушке возникает магнитное поле Н. По мере разрядки конденсатора его электрическое поле ослабевает, а магнитное поле катушки усиливается.

В момент времени t 1 конденсатор полностью разрядится. При этом Е=0, Н=Н m . Теперь вся энергия контура будет сосредоточена в катушке. Через четверть периода конденсатор перезарядится и энергия контура от катушки перейдет к конденсатору и т.д.

Т.о. в контуре возникают электрические колебания с периодом Т; в течение первой половины периода ток идет в одном направлении, в течение второй половины периода - в противоположном направлении.

Электрические колебания в контуре сопровождаются периодическими взаимными превращениями энергий электрического поля конденсатора и магнитного поля катушки самоиндукции, подобно тому, как механические колебания маятника сопровождаются взаимными превращениями потенциальной и кинетической энергий маятника.

Период э/м колебаний в контуре определяется формулой Томсона

Где L-индуктивность контура, С - его емкость. Колебания в контуре являются затухающими. Для осуществления непрерывных колебаний необходимо восполнять потери в контуре, подзаряжая конденсатор с помощью к/я приспособления.

3. Открытый колебательный контур представляет собой прямолинейный проводник с искровым промежутком посредине, обладающий малыми емкостью и индуктивностью.

В этом вибраторе переменное электрическое поле уже не было сосредоточено внутри конденсатора, а окружено вибратор снаружи, что существенно повышало интенсивность электромагнитного излучения.

Вибратор Герца представляет собой электрический диполь с переменным моментом.

Э/м излучение открытого вибратора 1 регистрируется с помощью второго вибратора3, имеющего такую же частоту колебаний, что и излучающий вибратор, т.е. настроенного в резонансе с излучателем и потому называемого резонатором.

Когда электромагнитные волны достигают резонатора, в нем возникают электрические колебания, сопровождающиеся проскакиванием искры через искровой промежуток.

Незатухающие электромагнитные колебания являются источником непрерывного магнитного излучения.

4. Из теории Максвелла вытекает, что различные электромагнитные волны, в том числе и световые, имеют общую природу. В связи с этим целесообразно представить всевозможные электромагнитные волны в виде единой шкалы.

Вся шкала условно подразделена на шесть диапазонов: радиоволны (длинные, средние и короткие), инфракрасные, видимые, ультрафиолетовые, рентгеновские и гамма-излучение.

Радиоволны обусловлены переменными токами в проводниках и электронными потоками.

Инфракрасное, видимое и ультрафиолетовое излучения исходят из атомов, молекул и быстрых заряженных частиц.

Рентгеновское излучение возникает при внутриатомных процессах, гамма-излучение имеет ядерное происхождение.

Некоторые диапазоны перекрываются, так как волны одной и той же длины могут образоваться в разных процессах. Так, наиболее коротковолновое ультрафиолетовое излучение перекрывается длинноволновым рентгеновским.

В медицине принято следующее условное разделение электромагнитных колебаний на частотные диапазоны.

Часто физиотерапевтическую электронную аппаратуру низкой и звуковой частоты называют низкочастотной. Электронную аппаратуру всех других частот называют обобщающим понятием высокочастотная.

Внутри этих групп аппаратов существует и своя внутренняя классификация в зависимости от их параметров и назначения.

5. Воздействие на организм человека переменным магнитным полем.

В массивных проводящих телах, находящихся в переменном магнитном поле, возникают вихревые токи. Эти токи могут использоваться для прогревания биологических тканей и органов. Такой метод получил название индуктотермией.

При индуктотермии количество теплоты, выделяющееся в тканях, пропорционально квадратам частоты и индукции переменного магнитного поля и обратно пропорционально удельному сопротивлению. Поэтому сильнее будут нагреваться ткани, богатые сосудами, например, мышцы, чем ткани с жиром.

Воздействие переменным электрическим полем

В тканях, находящихся в переменном электрическом поле, возникают токи смещения и токи проводимости. Для этой цели используют электрические поля ультравысокой частоты, поэтому соответствующий физиотерапевтический метод получил название УВЧ-терапии.

Выделяющееся в теле количество теплоты можно выразить так:

(1)

Здесь Е - напряженность электрического поля

l - длина объекта, помещенного в поле

S - его сечение

Его сопротивление

Его удельное сопротивление.

Разделив обе части (1) на объем Sl тела, получим количество теплоты, выделяющееся за 1с в 1м 3 ткани:

Воздействие электромагнитными волнами

Применение э/м волн СВЧ диапазона-микроволновая терапия (частота 2375 МГц, =12,6см) и ДЦВ-терапия (частота 460МГц, =65,2см)

Э/м волны оказывают тепловое действие на биологические объекты. Э/м волна поляризует молекулы вещества и периодически переориентирует их как электрические диполи. Кроме того, э/м волна воздействует на ионы биологических систем и вызывает переменный ток проводимости.

Таким образом, в веществе, находящемся в электромагнитном поле, есть токи смещения, так и токи проводимости. Все это приводит к нагреванию вещества.

Большое значение имеют токи смещения, обусловленные переориентацией молекул воды. В связи с этим, максимальное поглощение энергии микроволн происходит в таких тканях, как мышцы и кровь, а в костной и жировой икании меньше, они меньше и нагреваются.

Электромагнитные волны могут влиять на биологические объекты, разрывая водородные связи и влияя на ориентацию макромолекул ДНК и РНК.

Учитывая сложный состав тканей условно считают, что при микроволновой терапии глубина проникновения электромагнитных волн равна 3-5 см от поверхности, а при ДЦВ-терапии-до 9см.

Сантиметровые э/м волны проникают в мышцы, кожу, биолгические жидкости до 2 см, в жир, кости-до 10см.

Электрические колебания и электромагнитные волны

Колебательные изменения в электрической цепи величин заряда, тока или напряжения называют электрическими колебаниями. Переменные электрический ток является одним из видов электрических колебаний.

Электрические колебания высокой частоты получают в большинстве случаев с помощью колебательного контура.

Колебательный контур представляет замкнутую цепь, состоящую из индуктивности L и емкости C .

Период собственных колебаний контура:

а ток в контуре изменяется но закону затухающих колебаний:

При воздействии на колебательный контур переменной ЭДС в контуре устанавливаются вынужденные колебания. Амплитуда вынужденных колебаний тока при постоянных значениях L , C , R зависит от отношения собственной частоты колебаний контура и частоты изменения синусоидальной ЭДС (рис.1).

Согласно закону Био–Савара–Лапласа ток проводимости создает магнитное поле с замкнутыми силовыми линиями. Такое поле называется вихревым .

Переменный ток проводимости создает переменное магнитное поле. Переменный ток в отличие от постоянного проходит через конденсатор; но этот ток не является током проводимости; он называется током смещении . Ток смещения представляет собой изменяющееся но времени электрическое поле; он создает переменное магнитное поле, как и переменный ток проводимости. Плотность тока смещения:

В каждой точке пространства изменение во времени индукции электрического поля создает переменное вихревое магнитное поле (рис.2а). Векторы B возникающего магнитного ноля лежат в плоскости, перпендикулярной к вектору D . Математическое уравнение, выражающее эту закономерность, называется первым уравнением Максвелла .

При электромагнитной индукции возникает электрическое поле с замкнутыми силовыми линиями (вихревое ноле), которое проявляется как ЭДС индукции. В каждой точке пространства изменение во времени вектора индукции магнитного поля создает переменное вихревое электрическое поле (рис.2б). Векторы D возникающего электрического поля лежат в плоскости, перпендикулярной к вектору B . Математическое уравнение, описывающее эту закономерность, называется вторым уравнением Максвелла .

Совокупность переменных электрических и магнитных полей, которые неразрывно связаны друг с другом, называется электромагнитным полем.

Из уравнений Максвелла следует, что возникшее в какой-либо точке изменение во времени электрического (или магнитного) поля будет перемещаться от одной точки к другой, при этом будут происходить взаимные превращения электрических и магнитных полей.

Электромагнитные волны представляют собой процесс одновременного распространения в пространстве изменяющихся электрического и магнитного полей. Векторы напряженностей электрического и магнитного полей (E и H ) к электромагнитной волне перпендикулярны друг к другу, а вектор v скорости распространения перпендикулярен к плоскости, в которой лежат оба вектора E и H (рис.3), Это справедливо при распространении электромагнитных волн и неограниченном пространстве.

Скорость распространения электромагнитных волн в вакууме не зависит от длины волны и равна

Скорость электромагнитных волн в различных средах меньше скорости в вакууме.

План лекции

1. Колебательные контуры. Квазистационарные токи.

2. Собственные электрические колебания.

2.1. Собственные незатухающие колебания.

2.2. Собственные затухающие колебания.

3. Вынужденные электрические колебания.

3.1. Сопротивление в цепи переменного тока.

3.2. Ёмкость в цепи переменного тока.

3.3. Индуктивность в цепи переменного тока.

3.4. Вынужденные колебания. Резонанс.

3.5. Проблема косинуса фи.

  1. Колебательные контуры. Квазистационарные токи.

Колебания электрических величин - заряда, напряжения, тока - можно наблюдать в цепи, состоящей из последовательно соединённых сопротивления (R ), ёмкости (C ) и катушки индуктивности (L ) (рис. 11.1).

Рис. 11.1.

При положении 1 переключателя К , конденсатор заряжается от источника.

Если теперь переключить его в положение 2, то в цепи RLC возникнут колебания с периодомT , аналогичные колебаниям груза на пружине.

Колебания, происходящие только за счёт внутренних энергетических ресурсов системы, называются собственными. Первоначально энергия была сообщена конденсатору и локализована в электростатическом поле. При замыкании конденсатора на катушку, в цепи появляется разрядный ток, а в катушке - магнитное поле. Э.д.с. самоиндукции катушки будет препятствовать мгновенной разрядке конденсатора. Через четверть периода конденсатор полностью разрядится, но ток будет продолжать течь, поддерживаемый электродвижущей силой самоиндукции. К моментуэта э.д.с. перезарядит конденсатор. Ток в контуре и магнитное поле уменьшатся до нуля, заряд на обкладках конденсатора достигнет максимального значения.

Эти колебания электрических величин в контуре будут происходить неограниченно долго, если сопротивление контура R = 0. Такой процесс называютсобственные незатухающие колебания . Подобные колебания мы наблюдали и в механической колебательной системе, когда в ней отсутствует сила сопротивления. Если сопротивлением резистораR (силой сопротивления в механическом осцилляторе) пренебречь нельзя, то в подобных системах будут происходитьсобственные затухающие колебания .

На графиках рис. 11.2. представлены зависимости заряда конденсатора от времени в случае незатухающих (а ) и затухающих (б ,в ,г ) колебаний. Характер затухающих колебаний меняется с увеличением сопротивления резистораR . Когда сопротивление превысит определённоекритическое значениеR к, колебания в системе не возникают. Происходит монотонный апериодический разряд конденсатора (рис. 11.2.г .).

Рис. 11.2.

Прежде, чем перейти к математическому анализу колебательных процессов, сделаем одно важное замечание. При составлении уравнений колебаний мы будем пользоваться правилами Кирхгофа (законами Ома), которые справедливы, строго говоря, для постоянного тока. Но в колебательных системах ток меняется во времени. Однако, и в этом случае можно воспользоваться этими законами для мгновенного значения тока, если скорость изменения тока не слишком высока. Такие токи называются квазистационарными («квази» (лат.) - как будто). Но что значит скорость «слишком» или «не слишком» высока? Если ток изменится на некотором участке цепи, тот импульс этого изменения достигнет самой дальней точки контура спустя время:

.

Здесь l - характерный размер контура, ас - скорость света, с которой сигнал распространяется в цепи.

Скорость изменения тока считается не слишком высокой, а ток квазистационарным, если:

,

где Т - период изменения, тот есть характерное время колебательного процесса.

Например, для цепи длиной 3 м запаздывание сигнала составит ==
= 10 ‑8 с. То есть переменный ток в этой цепи можно считать квазистационарным, если его период более10 –6 с, что соответствует частоте=10 6 Гц. Таким образом, для частот 010 6 Гц в рассматриваемой цепи могут быть использованы правила Кирхгофа для мгновенных значений тока и напряжений.