Формулы фишера примеры. Проекционные формулы Фишера. Проекции Фишера для молекул с несколькими центрами оптической изомерии

Этими формулами обычно пользуются для пространственного изображения молекул, содержащих асимметрический атом углерода : это тетраэдрический (sp 3 -гибридный) атом углерода, связанный с четырьмя разными атомами или группами атомов.

Для изображения проекционной формулы тетраэдрическую модель молекулы располагают так, чтобы асимметрический атом находился в плоскости чертежа, а две связи от асимметрического атома углерода лежали в горизонтальной плоскости, выступающей к наблюдателю из плоскости чертежа. Две другие связи должны располагаться в вертикальной плоскости, уходящей от наблюдателя за плоскость чертежа.

При использовании проекций Фишера символ асимметрического атома углерода обычно опускают:

Следует всегда учитывать, что формулы Фишера являются проекциями на плоскость и их не следует рассматривать как пространственные модели.

Поэтому необходимо соблюдать следующие правила:

­ проекционную формулу, отвечающую конкретному стереоизомеру, нельзя выводить из плоскости чертежа и нельзя поворачивать в плоскости на 90 о и 270 о;

­ возможен поворот формулы на 180 о

­ если положение одной атомной группы не менять, то остальные три можно вращать по часовой или против часовой стрелки:

4.2. Оптическая активность* и хиральность

Под оптической активностью подразумевают свойство, способность вещества вращать (отклонять на определённый угол) плоскость поляризованного света.

Поворот плоскости поляризации происходит либо по часовой стрелке (правое вращение), либо против хода часовой стрелки (левое вращение).

Для соединения, содержащего один асимметрический атом углерода возможны два изомера, которые соотносятся между собой как предмет и его зеркальное отражение, что видно на примере молочной кислоты.

Два изомера, каждый из которых является зеркальным отражением другого, называются оптическими или зеркальными изомерами .

Такая пара зеркальных изомеров называется энантиомерами или оптическими антиподами .

Энантиомерам присущи одинаковые физические свойства, за исключением направления вращения плоскости поляризации: они отклоняют поляризованный свет на один и тот же угол, но в противоположных направлениях.

Соединения, которые несовместимы со своим зеркальным отражением, принято называть хиральными .

Хиральность (от cheir – рука) – это основное понятие стереохимии, обозначающее свойство объекта быть несовместимым со своим зеркальным отображением; является обязательным условием оптической активности молекул.



Смесь веществ, состоящая из равных количеств обоих энантиомеров, называется рацемической смесью . Оптическая активность такой смеси равна 0.

Стереоизомеры, не являющиеся энантиомерами, называются диастереомерами (подробно см. ниже, разд. 4.4.).

Таким образом, все хиральные молекулы являются молекулами оптически активных соединений.

Между хиральностью и оптической активностью существует однозначное соответствие. Характерной особенностью хиральных молекул является отсутствие оси, центра и плоскости симметрии, которые являются элементами симметрии .

Ось симметрии. Если вращение вокруг оси, проходящей через молекулу, на угол 2π/n=360 o /n вновь приводит её в исходное состояние, то такую ось называют осью симметрии n-го порядка С n . Понятно, что при значении n=1 в любом случае поворот вокруг оси возвращает молекулу в первоначальное состояние.

Например, молекула воды (а) имеет ось симметрии второго порядка (n=2), хлорметана (б) – третьего порядка, а в бензоле (в) наряду с шестью осями, располагающимися в плоскости цикла (n=2), имеется ещё одна ось (n=6), которая перпендикулярна плоскости цикла.

Плоскость симметрии. Если плоскость, проходящая через молекулу (объект) делит её на две части, соотносящиеся между собой как зеркальные изомеры, то её называют плоскостью симметрии . Вода имеет две плоскости симметрии, а хлорметан – три.

Центр симметрии i – это точка в центре молекулы, на равном расстоянии от которой на одной прямой располагаются две эквивалентные, равноценные точки данной молекулы.

В молекуле не может быть более одного центра симметрии.

Таким образом, с точки зрения наличия или отсутствия в молекулах элементов симметрии принято говорить о хиральности и ахиральности . В большинстве случаев по смыслу они совпадают с понятиями «асимметричность» и «симметричность». Вместе с тем хиральность – это понятие гораздо шире, чем асимметричность, поскольку хиральная молекула может содержать некоторые элементы симметрии. По этой же причине в стереохимии термин «асимметрический» атом очень часто заменяют термином «центр хиральности». Следовательно, под хиральностью следует подразумевать свойство объекта быть несовместимым со своим зеркальным отображением. Ахиральная молекула содержит по крайней мере один элемент симметрии (либо центр, либо плоскость симметрии). Частным случаем ахиральности является прохиральность: способность, свойство ахиральной молекулы переходить в хиральную путём одноразового изменения одного какого-либо структурного фрагмента. Как правило, такая операция возможна при наличии прохирального центра – то есть центра, содержащего два различных и два одинаковых заместителя. Замещение одного из таких одинаковых заместителей на другой, отличающийся от всех имеющихся, превращает этот центр в хиральный:



Конфигурация и конформация

Стереоизомеры могут различаться конфигурациями (конфигурационные изомеры) или конформациями (конформационные изомеры).

Конфигурация – пространственное расположение атомов и/или атомных групп вокруг хирального центра, плоскости двойной связи или плоскости цикла и характеризующее определённый стереоизомер. Это понятие в большей степени имеет качественный характер и по сути отражает стереохимическую особенность конкретного расположения атомов в пространстве вокруг хирального центра данной молекулы.

Ниже показаны пары соединений, представляющие собой кофигурационные изомеры:

Конформация* - определённая геометрия молекулы, обусловленная внутренним вращением атомов или атомных групп вокруг простых связей. При этом стереохимическая конфигурация молекулы остаётся неизменной.

Для изображения конформаций пользуются проекциями Ньюмена. Для этана возможны две граничные конформации – заслоненная (I) и заторможенная (II).

Бутан отличается от этана наличием двух метильных групп, в связи с чем для данной молекулы возможно большее число заторможенных конформаций, что показано ниже. Более устойчивая конформация I обозначается как анти- : здесь метильные группы максимально удалены друг от друга (двугранный угол равен 180 о). Две другие конформации – скошенные, или иначе гош-конформации (II и III), в которых метильные группы образуют угол 60 о:

Известно, что альдегиды и кетоны реагируют со спиртами, образуя полуацетали и кетали. Циклические полуацетали образуются особенно легко. Для этого необходимыми условиями являются: 1) гидроксил и карбонильная группа должны быть частями одной молекулы; 2) при их взаимодействии может образоваться пяти- или шестичленное кольцо.
Например, 4-гидроксипентаналь образует пятичленный циклический полуацеталь. При этом создается новый стереоцентр при углероде С-1 (все четыре заместителя при С-1 разные):

Подобным образом 5-гидроксигексаналь формирует шестичленный циклический полуацеталь, в котором также генерируется новый стереоцентр при С-1:

Гидроксильная и карбонильная группы содержатся в одной молекуле моносахаридов, поэтому моносахариды существуют почти исключительно в форме циклических полуацеталей.
Циклические проекции Фишера. Размер полуацетального кольца моносахарида сравнивают с гетероциклическими молекулами – пираном и фураном:

Шестичленные полуацетальные кольца обозначают словом «пиран», а пятичленные – «фуран».
При кристаллизации из этанола D-глюкоза дает -D-глюкопиранозу, t пл = 146 °С, удельное оптическое вращение D = +112,2°. Кристаллизация из водного этанола дает -D-глюкопиранозу, t пл = 150 °С, D = +18,7°. Эти - и -изомеры – шестичленные циклические полуацетали – образуются при реакции гидроксила ОН при углероде С-5 с карбонильной группой в положении 1. Новый стереоцентр, возникающий при получении полуацеталя, называют аномерным углеродом . Образующиеся таким образом диастереомеры имеют специальное название – аномеры . Конфигурация аномерного углерода обозначается приставкой , когда его гидроксильная группа находится с той же стороны фишеровской проекции, что и ОН-группа при стереоцентре с высшим номером. При противоположной ориентации этих гидроксилов конфигурация аномерного углерода – .

По данным метода ЯМР 13 С D-глюкозы в водном растворе, существуют: -пираноза (38,8%),
-пираноза (60,9%), -фураноза (0,14%), -фураноза (0,15%), гидрат открытой линейной формы (0,0045%).
Приводим - и -формы глюкофуранозы в сравнении с циклическими формами фруктозы –
-фруктофуранозы и -фруктофуранозы.

В альдозах замыкание цикла возможно за счет 1-го (альдегидного) углерода и гидроксила при 4-м (или 5-м) атоме С, а в кетозах – за счет 2-го (карбонильного) углерода и гидроксила в 5-м или 6-м положении цепи.

Формулы Хеуорса. Альтернативный способ изображения циклических структур моносахаридов известен как проекции Хеуорса и назван так в честь английского химика Уолтера Хеуорса (нобелевский лауреат, 1937 г.). В формулах Хеуорса пяти- и шестичленные циклические полуацетали представляют в виде плоских пяти- или шестиугольников, расположенных как бы перпендикулярно плоскости листа бумаги. Группы, присоединенные к углеродам кольца, располагают над или под плоскостью кольца и параллельно плоскости листа бумаги. В формулах Хеуорса аномерный углерод обычно записывают справа, а полуацетальный кислород – сзади него. Проекции Хеуорса - и -пиранозных форм D-глюкозы показаны ниже.

УПРАЖНЕНИЯ.

1. Что означает понятие «циклические формы углеводов»?

2. Приведите структурные и проекционные формулы Фишера для: а) триозы; б) тетрозы;
в) пентозы.

3. Как по химическим формулам различить L- и D-изомеры (на примере эритрозы)?

4. Укажите ацетальные связи и асимметрические атомы углерода (стереоцентры) в соединениях:

5. Напишите структурные формулы гетероциклов пирана и фурана, указывая каждый атом.

6. Составьте схемы образования циклических полуацетальных форм из:
а) D-треозы; б) D-рибозы (фуранозная и пиранозная формы).

7. Преобразуйте графические формулы соединений а)–в) в фишеровские проекции и сделайте отнесение этих проекций к D- или L-глицеральдегиду:

8. Сколько возможно кетотетроз? Для каждой нарисуйте проекции Фишера.

9. Составьте формулы Хеуорса:

1) -D-глюкопиранозы; 2) -D-глюкофуранозы.

Ответы на упражнения к теме 2

Урок 34

1. Циклические формы углеводов содержат цикл с кислородом в кольце. Обычно это циклический полуацеталь. В его молекуле нет свободной альдегидной группы, зато имеется ацетальная связь. Например, для эритрозы:

3. Чтобы по химическим формулам различить D- и L-изомеры эритрозы, следует представить их в виде проекций Фишера. Ориентация гидроксила вправо при высшем стереоцентре С*-3 означает
D-изомер. Направление группы НО влево от С*-3 свойственно L-изомеру:

4. Ацетальные связи отмечены стрелкой (), а стереоцентры – звездочкой (*):

в) две последовательные перестановки заместителей не изменяют конфигурацию (D или L) при стереоцентре:

8. Возможны две энантиомерные кетотетрозы, для которых проекции Фишера следующие:

9. Формулы Хеуорса:

Диастереомеры – стереоизомеры, молекулы которых не являются зеркальным отображением друг друга.

При изображении стереоизомеров часто пользуются формулами Фишера. В этих формулах хиральный центр рисуют с четырьмя связями, образующими друг с другом прямые углы. Вертикальные линии изображают проекцию на плоскость заместителей, находящихся за плоскостью, в то время как горизонтальные линии - это проекция заместителей, находящихся перед плоскостью. Символ асимметрического атома углерода в проекционных формулах Фишера принято опускать.

До 1951 г. установление абсолютной конфигурации было невозможно. Розанов в 1906 г предложил использовать в качестве относительного стандарта правовращающий (+) глицериновый альдегид, которому произвольно приписали конфигурацию D. Левовращающий антипод обозначили буквой L.

D-глицериновый альдегид L-глицериновый альдегид

В формулах Фишера самая длинная углеродная цепь записывается вертикально с атомом углерода №1 наверху; вертикальные связи асимметрического атома углерода располагаются за плоскостью чертежа, а горизонтальные над плоскостью.

D-молочная кислота L-молочная кислота

Если в проекции Фишера поменять местами две соседние группы, то получим зеркальное изображение исходного соединения. Зеркальное изображение начальной структуры получается и при повороте проекции Фишера на 90 о.

Диастереоизомерия

В виде диастереомеров могут существовать соединения, молекулы которых имеют два и более стереоцентров. С увеличением числа асимметрических атомов углерода число стереоизомеров увеличивается с появлением каждого нового стереоцентра и может быть вычислено по формуле N = 2 n , где n – число стереоцентров. Молекулы с двумя асимметрическими атомами углерода могут существовать в виде четырех стереоизомеров. Например, в молекуле 2,3-дибромпентана имеется два стереоцентра и, следовательно, у этого соединения 4 стереоизомера.

2,3-дибромпентан

(2S,3R)-2,3-дибромпентан (2R,3S)-2,3-ди… (2S,3S)-2,3-ди… (23,3R)-2,3-ди…

(I) (II) (III) (IV)

Пары стереоизомеров (I) и (II), также (III) и (IV) относятся друг к другу как предмет и несовместимое с ним зеркальное изображение, т.е. являются парами энантиомеров. Стереоизомеры в любых других парах являются диастереомерами. Две различные конфигурации одной молекулы, но не являющиеся энантиомерами, называются диастереомерами. Два диастереомера различаются по всем свойствам и сравнительно легко разделяются, как два различных соединения.

В проекционных формулах (I) и (II) одинаковые лиганды находятся по одну сторону проекции, такие стереоизомеры называют эритро -формами. В формулах (III) и (IV) эти же лиганды находятся по разные стороны вертикальной линии проекции Фишера, соответствующие им соединения называют трео -формами.



А. Мезо-соединения

У структуры с двумя стереоцентрами не всегда может быть 4 стереоизомера. Например, у 2,3-дибромбутана имеется два стереоцентра, но не 4 а только 3 стереоизомера.

(2S,3R)-2,3-дибромбутан (2S,3S)-2,3-ди… (2R,3R)-2,3-ди…

мезо- форма

Нумеровать атомы 2,3-дибромбутана можно сверху вниз или снизу вверх и тогда видно, что первые две структуры изображают один и тот же стереоизомер. Этот стереоизомер ахирален и оптически не активен, т. к. имеет плоскость симметрии

Упр. 7. Изобразите формулы Фишера пространственных изомеров: (а) глицеринового альдегида (2,3-дигидроксипропаналя), (б) молочной (2-гидроксипропа-новой) кислоты, (в) яблочной (2-гидроксибутандиовой или гидроксиянтарной) кислоты, (г) винной (2,3-дигидроксибутандиовой или дигидроксиянтарной) кислоты.

P-Диастереомеры

Алкены и их производные с общей формулой ABC=CDE могут существовать в виде p-диастереомеров. p-Диастереомеры возникают при условии неидентичности лигандов, связанных с отдельными атомами углерода двойной связи. p-Диастерео-меры отличаются друг от друга различным расположением лигандов относительно проскости симметрии p-связи.

О заместителях, расположенных по одну сторону от двойной связи, говорят, что они находятся в цис -положении относительно друг друга; если они расположены по разные стороны от плоскости двойной связи, то это транс -положение. В последнее время вместо терминов цис- и транс - рекомендуется Z,E-система. Если две наиболее старшие группы (по системе Кана-Ингольда-Прелога) расположены по одну сторону от p-связи, то конфигурация заместителей обозначается символом Z, если же эти группы находятся по разные стороны от плоскости p-связи, то конфигурация обозначается символом Е.

Таким образом, мы обсудили два вида диастереоизомерии:

Диастереоизомерия возникающая в результате комбинации элементов хиральности (в этом случае диастереоизомерия и энантиомерия накладываются друг на друга);

Диастереоизомерия цис-транс -изомеров.

Упр. 8. . Напишите структурные формулы (а) цис- 1,2-дихлорэтена и транс -1,2-дихлорэтена, (б) цис- 1,2-дифторэтена и транс -1,2-дифторэтена, (в) цис- 1,2-дихлор-

1,2-дифторэтена и транс- 1,2-дихлор-1,2-дифторэтена.

2.4 Цис-транс изомерия и конформации циклоалканов

Циклопропан, средство для ингаляционного наркоза (т. кип. -33 о С) имеет плоскую структуру. Каждый из трех атомов водорода по одну сторону от плоскости кольца занимает транс положение по отношению к каждому атому водорода, находящемуся по другую сторону плоскости кольца. Любые два атома водорода, расположенные по одну сторону кольца, находятся в цис положении и заслоняют друг друга.

циклопропан цис -водороды транс -водороды

Существует только один монозамещенный циклопропан. Дизамещенный циклопропан c одинаковыми заместителями может существовать в виде двух диастереомеров. Традиционно их описывают как цис - и транс- формы. У цис -формы есть плоскость симметрии, и она, поэтому не может существовать в виде пары энантиомеров, в то время как транс -форма - может.

цис -1,2-диметилциклопропан транс -1,2-диметилциклопропан

Б. Циклопентан

Молекула циклопентана почти плоская. В молекуле 1,2-диметилциклопентана два стереоцентра и поэтому он существует в виде трех стереоизомеров.

энантиомеры мезо соединение

Транс изомер существует в виде двух энантиомеров, а цис -1,2-диметилцикло-пентан является мезо соединением, т. к. у него есть плоскость симметрии. 1,3-Диме-тилциклопентан также существует в виде трех стереоизомеров.

энантиомеры мезо соединение

В. Циклогексан

Если в циклогексановом кольце имеется более одного заместителя, то при оценке стабильности той или иной конформации учитывают взаимное расположение заместителей в кольце и их строение. Так в молекуле транс -1,2-диметилцикло-гексана оба заместителя могут занимать или аксиальное, или экваториальное положение; разумеется, более выгодной является диэкваториальная конформация.

транс -1,2-диметилциклогексан цис -1,2-диметилциклогексан

У цис -изомера в любой из двух конформаций кресла одна из метильных групп занимает аксиальное положение, другая – экваториальное.

Молекула циклогексана может принимать несколько конформаций.

«кресло» «ванна»

При обычной температуре на 99,9% она существует в форме двух быстро интерконвертирующих кресловидных конформаций. Конформация кресла наиболее симметрична, каждый атом углерода имеет по две неэквивалентные связи С–Н.

У формы кресла есть ось симметрии третьего порядка. Шесть связей С-Н в циклогексане параллельны этой оси: три из них направлены вверх, а три - вниз, эти атомы водорода занимают аксиальное (а) положение. Еще шесть связей С-Н почти перпендикулярны оси симметрии, эти атомы водорода занимают экваториальное (е) положение.

В процессе конформационных превращений все аксиальные заместители а становятся экваториальными, и соответственно экваториальные е – аксиальными. С этой точки зрения конформационные переходы циклогексана называют инверсией .

Переход осуществляется через промежуточно возникающую твист-конформацию. Барьер конформационного перехода в циклогексане равен приблизительно 42 кДж/моль и мало меняется при введении заместителей.

Из ньюменовской проекции “кресла” циклогексана ясно, что соседние атомы водорода не заслонены.

проекция Ньюмена циклогексана

Кроме формы кресла существует также форма ванны, полу кресла (или полу твист) и твист-форма циклогексана. Эти формы известны под названием подвижных форм.

Рис.4. Энергетическая характеристика конформаций циклогексана

В форме ванны два атома водорода называют бушпринтными и два - флагштоковыми. Форма ванны является переходной между различными твист-формами, а полутвист-форма - переходной между формой кресла и твист-формой. Из трех подвижных форм наиболее важную роль играет твист-форма.

Кроме того, через полутвист-конформацию идет важный процесс взаимного превращения кресло-кресло (инверсия), в результате которого все (а) связи становятся (е) (в то же время все цис-транс соотношения между ними остаются неизменными).

Для монозамещенных циклогексанов имеются две неэквивалентные конформации с заместителями в аксиальном и экваториальном положениях. Обычно более устойчива экваториальная форма.

Разница в относительной стабильности конформеров с аксиальным и экваториальным положением заместителей объясняется диаксиальным взаимодействием аксиальных атомов водорода с заместителями.

проекции Ньюмена конформеров метилциклогексана

Барьер взаимопревращения (а)- и (е)-конформеров очень низок. Большинство заместителей предпочитают экваториальное положение. трет -Бутильная группа в циклогексане фактически всегда экваториальна.

DL-номенклатура

Глицериновый альдегид имеет один центр оптической изомерии, так как у него один асимметричный атом углерода. Следовательно, альдегид может существовать в виде двух оптических изомеров.

Изомер, вращающийся вправо Фишер обозначил буквой $D$, вращающийся влево – $L$. Полученные из $D$-изомера глицеринового альдегида углеводы были отнесены к $D$-ряду , а углеводы, полученные из $L$-изомера отнесены к $L$-ряду.

$DL$-номенклатура широко применяется в наши дни при обозначении энантиомеров углеводов и аминокислот. К $D$-ряду принадлежат все природные углеводы, к $L$-ряду – все природные аминокислоты.

Проекционные формулы Фишера

В 1891 году Э. Фишером было предложено пространственное строение соединений представлять в виде проекций.

Для создания проекционных формул Фишера тетраэдр разворачивают таким образом, чтобы две связи, находящиеся в горизонтальной плоскости, были направлены к наблюдателю, а две связи, лежащие в вертикальной плоскости, располагались от наблюдателя.

Например, для $L$-глицеринового альдегида проекционная формула Фишера имеет вид

Так как тетраэдр можно рассматривать с разных сторон, одна модель может представить 12 внешне разных формул Фишера.

Формулы Фишера являются проекциями на плоскость, поэтому при их построении вводятся правила:


Во время взаимных перестановок двух групп в формулах Фишера возможно превращение энантиомера в его зеркальное отражение:

Если хиральность молекулы связана с плоскостью или осью, то проекции Фишера применять нельзя. В таких случаях пользуются трехмерными моделями.

Проекции Фишера для молекул с несколькими центрами оптической изомерии

Центры оптической изомерии могут иметь разное геометрическое строение, которое можно изобразить при помощи проекционных формул Фишера:

В молекуле винной кислоты есть два потенциальных центра оптической изомерии – два атома углерода, к которым присоединены четыре разные группы.

При построении проекционной формулы молекула винной кислоты вытягивается в вертикальную цепочку. Связи ориентированные вертикально уходят за плоскость рисунка, а расположенные горизонтально направлены к наблюдателю.

Для винной кислоты возможно существование трех изомеров (зеркальное отражение четвертого изомера совмещается с третьим). (+)- и (-)-Винные кислоты (А и Б соответственно) являются энантиомерами, то есть оптическими изомерами. У них одинаковы температуры плавления, растворимость в воде.

Третий изомер можно получить из (+)- или (-)-винной кислоты в результате обращения одного асимметричного центра. В результате получается мезо-форма (В), физические свойства которой будут отличаться от свойств энантиомеров винной кислоты.

По отношению к (+)- и (-)-винной кислоте мезо-форма является диастереомером.

При сокристаллизации (+)- и (-)-изомеров винной кислоты в равных количествах образуется рацемат, отличающийся от чистых изомеров физико – химическими свойствами.

Вещества, способные поворачивать плоскость поляризации проходящего через них света, называют оптически активными . Само это явление называется оптической активностью . Оптичеcки активные вещества существуют в виде пар оптических антиподов или энантиомеров , которые отличаются (при прочих равных условиях - одинаковой концентрации, одинаковой длиной пробега светового луча в веществе) знаком поворота плоскости поляризации света.

Молекулы оптически активных веществ обладают свойством хиральности - энантиомеры относятся друг к другу как оригинал и его зеркальное отражение (несовместимы ни при каком повороте). Чаще всего для возникновения хиральности необходимо присутствие в молекуле хирального атома углерода (хирального или асимметрического центра) - находящегося в состоянии sp 3 -гибридизации и имеющего четыре разных заместителя:

Эквимолярная смесь энантиомеров не обладает оптической активностью. Такая смесь называется рацемической смесью или рацематом .

Если молекула содержит несколько хиральных центров, изобразить ее в проекции,аналогичной предыдущему рисунку, очень трудно. В этом случае пользуются проекционными формулами Э. Фишера .

Число стереоизомеров в случае нескольких хиральных центров можно определить по формуле 2 n , где n - число хиральных атомов углерода. В случае альдотетроз, в которых два хиральных, центра существует 4 стереоизомера:


Молекулы 1 и 2, 3 и 4 представляют собой энантиомеры. Молекулы 2 и 4, 1 и 3, 2 и 3энантиомерами не являются, тем не менее это - стереоизомеры.

Стереоизомеры, не являющиеся энантиомерами, называются диастереомерами .

Диастереомеры отличаются по химическим и физическим свойствам, их можно разделить обычными химическими методами.

Число стереоизомеров может быть меньше, чем 2 n в случае существования мезоформы . Мезоформа возникает, если в молекуле имеются внутренние плоскости симметрии. Например у винной кислоты существует три стереоизомера:


Если изомеры 1 и 2 представляют собой пару энантиомеров, то 3 и 4 - это одно и то же - в молекуле есть внутренняя плоскость симметрии, показанная пунктиром. Мезоформа - это, по существу, внутримолекулярный рацемат. Действительно, верхняя часть 3 (выше пунктира) является зеркальным отражением нижней части. Оптической активностью мезоформа не обладает .

Номенклатура оптических изомеров

Первыми веществами, для которых было открыто и изучено явление оптической изомерии, были углеводы и аминокислоты. Поэтому исторически сложилось так, что стереоизомеры этих соединений определяют принадлежностью к тому или иному стерическому ряду и к эритро-трео -изомерам. Для соединений других классов используют понятие абсолютной конфигурации хирального центра.

Проекционные формулы Фишера

Формулы Фишера - это один из способов изображения на плоскости трехмерной структуры хирального центра. Возьмем пару энантиомеров и построим проекцию Фишера для правой молекулы:

Выберем направление, с которого будем рассматривать молекулу - оно показано стрелкой:

В этом случае связи С-А и С-Е направлены к нам, они, в соответствии с правилами записи формулы Фишера, изображаются горизонтальной линией. Связи C-B и C-D направлены от нас, они изображаются вертикальной линией. В результате проекция Фишера будет выглядеть как (1):

В настоящее время и вертикальная и горизонтальная линии изображаются как сплошные, атом углерода не рисуется - пересечение линий и подразумевает хиральный центр, в результате общепринятой является проекция (2).

Если рассматривать эту же молекулу с другой стороны, то можно получить еще одну проекцию Фишера:

Вообще можно нарисовать двенадцать проекций Фишера для данной молекулы. Для того, чтобы сравнить между собой полученные проекции, необходимо учесть, что проекции Фишера допускают над собой ряд преобразований.

Преобразования, сохраняющие исходную формулу

1. Четное число перестановок. Под перестановкой подразумевается обмен местами двух любых заместителей. Например, в формуле 2b можно поменять сначала D и A (первая перестановка), апотом E и D (который теперь стоит на месте А) - это будет вторая перестановка, в результате2b преобразовалось в 2. Заметно, что это - одно и то же.

2. Поворот проекции в плоскости чертежа на 180, 360, 540 и т.д. градусов:

3. Циклическая перестановка: один заместитель (любой) оставляем на месте,три оставшихся переставляем по кругу - по или против часовой стрелке. Эта операция эквивалентна двум перестановка, но иногда оказывается удобнее.

Преобразования, приводящие к энантиомеру

1. Нечетное число перестановок - меняем местами D и E - одна перестановка, с помощью зеркала, изображенного вертикальным пунктиром легко убедиться, что это - энантиомеры.

2. Поворот в плоскости чертежа на 90, 270, 450 и т.д. градусов. Повернем 2b на 90 o против часовой стрелки:

В полученной формуле сделаем четное число перестановок - поменяем местами В и Е, А и D. Сравнив2b и то, что получилось, наблюдаем, что это - энантиомер.

3. Отражение в зеркале или рассматривание "на просвет".

Стандартная проекция Фишера

В стандартной записи проекции Фишера главная цепь или цикл изображаются вертикальной линией, нумерация атомов углерода (по ИЮПАК) в цепи идет сверху вниз.