Комплексные соединения. Определение, классификация. Урок химии "комплексные соединения" Все соли могут образовывать комплексные соединения

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

Уфимский институт путей сообщения

Кафедра общеобразовательных и профессиональных дисциплин

Конспект лекции по дисциплине «Химия»

на тему: «Комплексные соединения»

для студентов 1 курса

железнодорожных специальностей

всех форм обучения

Составитель:

Конспект лекции по дисциплине «Химия» на тему «Комплексные соединения» для студентов 1 курса железнодорожных специальностей всех форм обучения / составитель: . – Самара: СамГУПС, 2011. – 9 с.

Утверждены на заседании кафедры ОиПД 23.03.2011г., протокол

Печатаются по решению редакционно-издательского совета университета.

Составитель:

Рецензенты: зав. кафедрой «Общая и инженерная химия» СамГУПС,

д. х.н., профессор;

доцент кафедры «Общая и неорганическая химия» БГУ (г. Уфа),

Подписано в печать 07.04.2011г. Формат 60/901/16.

Бумага писчая. Печать оперативная. Усл. печ. л. 0,6.

Тираж 100. Заказ № 73.

© Самарский государственный университет путей сообщения, 2011

Содержание Конспекта лекции соответствует государственному общеобразовательному стандарту и требованиям высшей школы к обязательному минимуму содержания и уровню знаний выпускников высшей школы по циклу «Естественнонаучные дисциплины». Лекция изложена как продолжение Курса лекций по химии для студентов железнодорожных специальностей 1-го курса всех форм обучения, составленного коллективом кафедры «Общая и инженерная химия»


Лекция содержит основные положения теорий химической связи, устойчивости комплексов, номенклатуру комплексных соединений, примеры решения задач. Изложенный в Лекции материал будет полезным подспорьем при изучении темы «Комплексные соединения» студентами дневной и заочной форм обучения и при решении контрольных заданий студентами заочного отделения всех специальностей.

Данное издание располагается на сайте института.

Комплексные соединения

Образование многих химических соединений происхо­дит в соответствии с валентностью атомов. Такие соединения называются простыми или соедине­ниями первого порядка. Вместе с тем, известно очень много соединений, образование которых невозможно объ­яснить исходя из правил валентности. Они образуются путем сочетания простых соединений. Такие соединения называются соединениями высшего порядка, комплексными или координационными соединениями. Примеры простых соединений: Н2О, NH3, AgCl, CuSO4. Примеры комплексных соединений: AgCl 2NH3, Co (NO3)3 6NH3, ZnSO4 4H2O, Fe (CN)3 3KCN, PtCl2 2KCI, PdCl2 2NH3.

Ионы некоторых элементов обладают способностью присоединять к себе полярные молекулы или другие ионы, образуя сложные комплексные ионы. Соединения, в которые входят комплексные ионы, способные существовать как в кристалле, так и в растворе, называются комплексными соединениями. Количество известных комплексных соединений во много раз превышает число привычных для нас простых соединений. Комплексные соединения были известны уже более полутора веков назад. До тех пор, пока не была установлена природа химической связи, причины их образования, эмпирические формулы соединений запи­сывали так, как мы указали в приведенных выше при­мерах. В 1893 г. швейцарский химик Альфред Вернер предложил первую теорию строения комплексных соединений, получившую название координационной теории. Комплексные соединения составляют наиболее обширный и разнообразный класс неорганических веществ. К ним принадлежат также многие элементоорганические соединения. Исследование свойств и пространственного строения комплексных соединений породило новые представления о природе химической связи.

1. Координационная теория

В молекуле комплексного соединения различают следующие структурные элементы: ион-комплексообразователь, координированные вокруг него присоединенные частицы - лиганды , составляющие вместе с комплексообразователем внутреннюю координационную сферу , и остальные частицы входящие во внешнюю координационную сферу . При растворении комплексных соединений лиганды остаются в прочной связи с ионом-комплексообразователем, образуя почти недиссоциирующий комплексный ион. Число лигандов называется координационным числом (к. ч.).

Рассмотрим ферроцианид калия K4 – комплексное соединение, образующееся при взаимодействии 4KCN+Fe(CN)2=K4.

При растворении комплексное соединение диссоциирует на ионы: K4↔4K++4-

Характерные комплексообразователи: Fe2+, Fe3+, Co3+, Cr3+, Ag+, Zn2+, Ni2+.

Характерные лиганды: Cl-, Br-, NO2-, CN-, NH3, H2O.

Заряд комплексообразователя равняется алгебраической сумме зарядов составляющих его ионов, например, 4-, x+6(-1)=-4, x=2.

Входящие в состав комплексного иона нейтральные молекулы оказывают влияния на заряд. Если вся внутренняя сфера заполнена только нейтральными молекулами,

то заряд иона равен заряду комплексообразователя. Так, у иона 2+, заряд меди x=+2.

Заряд комплексного иона равен сумме зарядов ионов, находящихся во внешней сфере. В K4 заряд равен -4, так как во внешней сфере находится 4K+, а молекула в целом электронейтральна. Возможно взаимное замещение лигандов во внутренней сфере при сохранении одного и того же координационного числа, например, Cl2, Cl, . Заряд иона кобальта равен +3.


Номенклатура комплексных соединений

При составлении названий комплексных соединений вначале указывается анион, а затем в родительном паде­же - катион (подобно простым соединениям: хлорид калия или сульфат алюминия). В скобках римской циф­рой указывается степень окисления центрального атома. Лиганды называются следующим образом: Н2О - аква, NH3 - аммин, С1- -хлоро-, CN - - циано-, SO4 2- - сульфато - и т. д. Назовем приведенные выше соединения а) AgCl 2NH3, Co (NO3)3 6NH3, ZnSO4 4H2O; б) Fe (CN)3 3KCN, PtCl2 2KCI; в) PdCl2 2NH3.

С комплексным катионом а) : хлорид диамминсеребра (I), нитрат гексамминкобальта (III), сульфат тетраквоцинка (П).

С комплексным анионом б) : гексацианоферрат (III) калия, тетрахлороплатинат (II) калия.

Комплекс - неэлектролит в) : дихлородиамминпалладий.

В случае неэлектролитов название строится в имени­тельном падеже и степень окисления центрального атома не указывается.

2. Методы установления координационных формул

Существует ряд методов установления координационных формул комплексных соединений.

С помощью реакций двойного обмена. Именно таким путем была доказана структура следующих комплексных соединений платины: PtCl4 ∙ 6NH3, PtCl4 ∙ 4NH3, PtCl4 ∙ 2NH3, PtCl4 ∙ 2KCl.

Если подействовать на раствор первого соединения раствором AgNO3, то весь содержащийся в нем хлор осаждается в виде хлорида серебра. Очевидно, что все четыре хлорид-иона находятся во внешней сфере и, следовательно, внутренняя сфера состоит только из лигандов аммиака . Таким образом, координационная формула соединения будет Cl4. В соединении PtCl4 ∙ 4NH3 нитрат серебра осаждает только половину хлора, т. е. во внешней сфере находятся только два хлорид-иона, а остальные два вместе с четырьмя молекулами аммиака входят в состав внутренней сферы, так что координационная формула имеет вид Cl2. Раствор соединения PtCl4 ∙ 2NH3 не дает осадка с AgNO3, это соединение изображается формулой . Наконец, из раствора соединения PtCl4 ∙ 2KCl нитрат серебра тоже не осаждает AgCl, но путем обменных реакций можно установить, что в растворе имеются ионы калия. На этом основании строение его изображается формулой K2.

По молярной электрической проводимости разбавленных растворов. При сильном разбавлении молярная электрическая проводимость комплексного соединения определяется зарядом и числом образующихся ионов. Для соединений, содержащих комплексный ион и однозарядные катионы или анионы, имеет место следующее примерное соотношение:

Число ионов, на которые распадается

молекула электролита

Λ(В), Ом-1 ∙ см2 ∙ моль-1

Измерение молярной электрической проводимости Λ(В) в ряду комплексных соединений платины(IV) позволяет составить следующие координационные формулы: Cl4 - диссоциирует с образованием пяти ионов; Cl2 - трех ионов; - нейтральная молекула; K2 – трех ионов, два из которых ионы калия. Существует и ряд других физико-химических методов установления координационных формул комплексных соединений.

3. Вид химической связи в комплексных соединениях

а) Электростатические представления .

Образование многих комплексных соединений можно в первом приближении объяснить электростатическим притяжением между центральным катионом и анионами или полярными молекулами лигандов. Наряду с силами притяжения действуют и силы электростатического отталкивания между одноименно заряженными лигандами. В результате образуется устойчивая группировка атомов (ионов), обладающая минимальной потенциальной энергией. Комплексообразователь и лиганды рассматриваются как заряженные недеформируемые шары определенных размеров. Их взаимодействие учитывается по закону Кулона. Таким образом, химическая связь считается ионной. Если лиганды являются нейтральными молекулами, то в этой модели следует учитывать ион-дипольное взаимодействие центрального иона с полярной молекулой лиганда. Результаты этих расчетов удовлетворительно передают зависимость координационного числа от заряда центрального иона. С увеличением заряда центрального иона прочность комплексных соединений увеличивается, увеличение его радиуса вызывает уменьшение прочности комплекса, но приводит к увеличению координационного числа. С увеличением размеров и заряда лигандов координационное число и устойчивость комплекса уменьшаются. Первичная диссоциация протекает почти нацело, по типу диссоциации сильных электролитов. Лиганды, находящиеся во внутренней сфере, связаны с центральным атомом значительно прочнее, и отщепляются лишь в небольшой степени. Обратимый распад внутренней сферы комплексного соединения носит название вторичной диссоциации. Например, диссоциацию комплекса Cl можно записать так:

Cl→++Cl - первичная диссоциация

+↔Ag++2NH3 вторичная диссоциация

Однако простая электростатическая теория не в состоянии объяснить избирательность (специфичность) комплексообразования, поскольку она не принимает во внимание природу центрального атома и лигандов, особенности строения их электронных оболочек. Для учета этих факторов электростатическая теория была дополнена поляризационными представлениями, согласно которым комплексообразованию благоприятствует участие в качестве центральных атомов небольших многозарядных катионов d-элементов, обладающих сильным поляризующим действием, а в качестве лигандов – больших, легко поляризующихся ионов или молекул. В этом случае происходит деформация электронных оболочек центрального атома и лигандов, приводящая к их взаимопроникновению, что и вызывает упрочнение связей.

б) Метод валентных связей.

В методе валентных связей предполагается, что центральный атом комплексообразователя должен иметь для образования ковалентных связей с лигандами свободные орбитали, число которых определяет максимальное значение к. ч. комплексообразователя. При этом ковалентная σ-связь возникает при перекрывании свободной орбитали атома комплексообразователя с заполненными орбиталями доноров, т. е. содержащими неподеленные пары электронов. Эта связь называется координационной связью.

Пример1 . Комплексный ион 2+ имеет тетраэдрическое строение. Какие орбитали комплексообразователя используются для образования связи с молекулами NH3?

Решение . Тетраэдрическое строение молекул характерно при образовании sp3-гибридных орбиталей.

Пример 2. Почему комплексный ион + имеет линейное строение?

Решение . Линейное строение этого иона является следствием образования двух гибридных sp-орбиталей ионом Cu+, на которые поступают электронные пары NH3.

Пример3 . Почему ион 2- парамагнитен, а 2- диамагнитен?

Решение. Ионы Cl - слабо взаимодействуют с ионами Ni2+. Электронные пары хлора поступают на орбитали следующего вакантного слоя с n=4. При этом 3d-электроны никеля остаются неспаренными, что и обусловливает парамагнетизм 2-.

В 2- вследствие dsp2-гибридизации происходит спаривание электронов и ион диамагнитен

в) Теория кристаллического поля.

Теория кристаллического поля рассматривает электростатическое взаимодействие между положительно заряженными ионами металла-комплексообразователя и неподеленными парами электронов лигандов. Под влиянием поля лигандов происходит расщепление d-уровней иона переходного металла. Обычно встречаются две конфигурации комплексных ионов – октаэдрическая и тетраэдрическая. Величина энергии расщепления зависит от природы лигандов и от конфигурации комплексов. Заселение электронами расщепленных d-орбит производится в соответствии с правилом Хунда, причем ионы OH-, F-, Cl - и молекулы H2O, NO являются лигандами слабого поля, а ионы CN-, NO2- и молекула CO – лигандами сильного поля, значительно расщепляющими d-уровни комплексообразователя. Схемы расщепления d-уровней в октаэдрическом и тетраэдрическом полях лигандов приведены .

Пример1. Изобразить распределение электронов титана в октаэдрическом комплексном ионе 3+.

Решение . Ион парамагнитен в соответствии с тем, что имеется один неспаренный электрон, локализованный на ионе Ti3+. Этот электрон занимает одну из трех вырожденных dε-орбиталей.

При поглощении света возможен переход электрона с dε- на dy-уровень. Действительно, ион 3+, имеющий единственный электрон на dε-орбитали, поглощает свет с длиной волны λ=4930Å. Это вызывает окрашивание разбавленных растворов солей Ti3+ в дополнительный к поглощенному пурпурный цвет. Энергия этого электронного перехода может быть вычислена по соотношению

https://pandia.ru/text/78/151/images/image002_7.png" width="50" height="32 src=">; Е=40 ккал/г∙ион = 1,74 эВ = 2,78∙10-12 эрг/ион. Подставляя в формулу для вычисления длины волны, получаем

DIV_ADBLOCK332">

Константа равновесия в этом случае называется константой нестойкости комплексного иона https://pandia.ru/text/78/151/images/image005_2.png" width="200" height="36 src="> Решая это уравнение, найдем х=2,52∙10-3 г∙ион/л и, следовательно, =10,1∙10-3 моль/л.

Пример2 . Определить степень диссоциации комплексного иона 2+ в 0,1 молярном растворе SO4.

Решение. Обозначим концентрацию , образовавшегося при диссоциации комплексного иона, через х. Тогда =4х, а 2+=(0,1- x) моль/л. Подставим равновесные концентрации компонентов в уравнение Поскольку х<<0,1, то 0,1–х ≈ 0,1. Тогда 2,6∙10-11=256х5, х=2,52∙10-3 моль/л и степень диссоциации комплексного иона

α=2,52∙10-3/0,1=0,025=2,5%.

1. , Яковлев указания к выполнению лабораторных работ по химии для студентов всех специальностей очной формы обучения. – Самара: СамГУПС, 2009. – 46 с.

2. , Химия: контрольные задания для студентов – заочников всех специальностей. – Самара: СамГУПС, 2008. – 100 с.

3. , М Курс лекций по химии для студентов 1-го курса железнодорожных специальностей всех форм обучения. Самара: СамГУПС, 2005. – 63 с.

4. , Резницкий и упражнения по общей химии: Учебное пособие – 2-е изд. – М.: Изд-во Моск. ун-та, 1985. С.60-68.

5. Глинка химия: Учебное пособие для вузов/Под ред. . – изд. 29-е, исправленное – М.: Интеграл-Пресс, 2002. С.354-378.

6. Л Задачи и упражнения по общей химии: Учебное пособие для вузов/ Под. ред. и М.: Кнорус, 2011.- С.174-187 .

7. Коровин химия: Учебник для технич. направлений и спец. вузов-6-е изд.,испр.-М.:Высш. шк., 2006. С.71-82

При рассмотрении видов химической связи отмечалось, что силы притяжения возникают не только между атомами, но и между молекулами и ионами. Такое взаимодействие может приводить к образованию новых более сложных комплексных (или координационных) соединений.

Комплексными называют соединения, имеющие в узлах кристаллической решетки агрегаты атомов (комплексы), способные к самостоятельному существованию в растворе и обладающие свойствами, отличными от свойств составляющих их частиц (атомов, ионов или молекул).

В молекуле комплексного соединения (например, K 4 ) различают следующие структурные элементы: ион-комплексообразователь (для данного комплекса Fe), координированные вокруг него присоединенные частицы – лиганды или адденды (CN -), составляющие вместе с комплексообразователем внутреннюю координационную сферу ( 4-), и остальные частицы, входящие во внешнюю координационную сферу (K +). При растворении комплексных соединений лиганды остаются в прочной связи с ионом-комплексообразователем, образуя почти не диссоциирующий комплексный ион. Число лигандов называется координационным числом (в случае K 4 координационное число равно 6). Координационное число определяется природой центрального атома и лигандов, а также соответствует наиболее симметричной геометрической конфигурации: 2 (линейная), 4 (тетраэдрическая или квадратная) и 6 (октаэдрическая конфигурация).

Характерными комплексообразователями являются катионы: Fe 2+ ,Fe 3+ ,Co 3+ ,Co 2+ ,Cu 2+ ,Ag + ,Cr 3+ ,Ni 2+ .Способность к образованию комплексных соединений связана с электронным строением атомов. Особенно легко образуют комп­лексные ионы элементы d-семейства, например: Ag + , Au + , Cu 2+ , Hg 2+ , Zn 2+ , Fe 2+ , Cd 2+ , Fe 3+ , Co 3+ , Ni 2+ , Pt 2+ , Pt 4+ и др. Комплексообразователями могут быть А1 3+ и некоторые неметаллы, например, Si и В.

Лигандами могут служить как заряженные ионы: F - , ОН - ,NO 3 - ,NO 2 - ,Cl - , Вг - ,I - ,CO 3 2- ,CrO 4 2- ,S 2 O 3 2- ,CN - ,PO 4 3- и др., так и электронейтральные полярные молекулы:NH 3 , Н 2 О, РН 3 , СО и др. Если все лиганды у комплексообразователя одинаковы, то ком­плексноесоединение однородное , например Cl 2 ; если ли­ганды разные, то соединениенеоднородное , например Cl. Между комплексообразователем и лигандами обычно устанав­ливаются координационные (донорно-акцепторные) связи. Они об­разуются в результате перекрывания заполненных электронами орбиталей лигандов вакантными орбиталями центрального атома. В комплексных соединениях донором является комплексообразователь, акцептором – лиганд.

Количество химических связей между комплексообразователем и лигандами определяет координационное число комплексообразователя. Характерные координационные числа:Cu + ,Ag + ,Au + = 2;Cu 2+ ,Hg 2+ ,Pb 2+ ,Pt 2+ , Pd 2+ =4;Ni 2+ ,Ni 3+ ,Co 3+ ,А1 3+ = 4 или 6; Fe 2+ , Fe 3+ , Pt 4+ , Pd 4+ , Ti 4+ , Pb 4+ , Si 4+ =6.

Заряд комплексообразователя равен алгебраической сумме зарядов составляющих его ионов, например: 4- , x + 6(-1) = 4-; x = 2.

Входящие в состав комплексного иона нейтральные молекулы не оказывают влияния на заряд. Если вся внутренняя сфера заполнена только нейтральными молекулами, то заряд иона равен заряду комплексообразователя. Так, у иона 2+ заряд меди х = 2+. Заряд комплексного иона равен зарядам ионов, находящихся во внешней сфере. В K 4 заряд равен -4, так как во внешней сфере находятся 4 катиона К + , а молекула в целом электронейтральна.

Лиганды во внутренней сфере могут замещать друг друга при сохранении одного и того же координационного числа.

Классификация и номенклатура комплексных соединений. С точки зрения заряда комплексной частицы все комплексные со­единения можно разделить на катионные, анионные и нейтральные.

Катионные комплексы образуют катионы металлов, координирую­щие вокруг себя нейтральные или анионные лиганды, причем суммар­ный заряд лигандов меньше по абсолютной величине, чем степень окисления комплексообразователя, например Cl 3 . Катионные комплексные со­единения помимо гидроксокомплексов и солей, могут быть кислотами, напримерH – гексафторсурьмяная кислота.

В анионных комплексах , напро­тив, лигандов-анионов такое число, что суммарный заряд комплексно­го аниона отрицателен, например . Ванионных комплексах в качестве лигандов выступают гидроксид-анионы – это гидроксокомплексы (например Na 2 – тетрагидроксоцинкат калия), или анионы кислотных остатков – этоацидокомплексы (напримерK 3 – гексацианоферрат (III) калия).

Нейтральные комплексы могут быть нескольких видов: комплекс нейтрального атома металла с нейтральными лигандами (напримерNi(CO) 4 – тетракарбонил никеля, [Сr(С 6 Н 6) 2 ] – дибензолхром). В нейтральных комплексах другого ви­да заряды комплексообразователя и лигандов уравновешивают друг друга (например, – хлорид гексаамминплатины (IV), – тринитротриамминкобальт).

Классифицировать комплексные соединения можно по природе лиганда. Среди соединений с нейтральными лигандами различают аквакомплексы, аммиакаты, карбонилы металлов. Ком­плексные соединения, содержащие в качестве лигандов молекулы во­ды, называютаквакомплексами . При кристаллизации вещества из раствора катион захватывает часть молекул воды, которые попадают в кристаллическую решетку соли. Та­кие вещества называютсякристаллогидратами, например А1С1 3 · 6Н 2 О. Большинство кристаллогидратов представляет собой аквакомплексы, поэтому их точнее изображать в виде комплексной соли ([А1(Н 2 О) 6 ]С1 3 – хлорид гексаакваалюминия). Комплексные соединения с молекулами аммиака в качестве лиганда называют аммиакатами , например C1 4 – хлорид гексаамминплатины (IV).Карбонилами металлов называют комплексные соединения, в ко­торых лигандами служат молекулы оксида углерода (II), например, – пентакарбонил железа, – тетракарбонил никеля.

Известны комплексные соединения с двумя комплексными ионами в молекуле, для которых существует явление координационной изомерии, которая связана с разным распределением лигандов между комплексообразователями, например: – гексанитрокобальтат (III) гексаамминникеля (III).

При составлении названия комплексного соединения применяются следующие правила:

1) если соединение является комплексной солью, то первым называется анион в именительном падеже, а затем катион в родительном падеже;

2) при названии комплексного иона сначала указываются лиганды, затем комплексообразователь;

3) молекулярные лиганды соответствуют названиям молекул (кроме воды и аммиака, для их обозначения применяются терми­ны «аква» и«амин» );

4) к анионным лигандам добавляют окончание – о, например: F - – фторо, С1 - – хлоро, О 2 - – оксо,CNS - – родано,NO 3 - – нитрато,CN - – циано,SO 4 2- – сульфато,S 2 O 3 2- – тиосульфато, СО 3 2- – карбонато, РО 4 3- – фосфато, ОН - – гидроксо;

5) для обозначения количества лигандов используются гречес­кие числительные: 2 – ди-, 3 –три-, 4 –тетра-, 5 –пента-, 6 –гекса-;

6) если комплексный ион – катион, то для названия комплексообразователя используют русское наименование элемента, если анион – латинское;

7) после названия комплексообразователя рим­ской цифрой в круглых скобках указывают его степень окисления;

8) у нейтральных комплексов название центрального атома дается в именительном падеже, а его степень окисления не указывается.

Свойства комплексных соединений. Химические реакции с участием комплексных соединений разделяют на два типа:

1) внешнесферные – при их протекании комплексная частица остается неизменной (реакции обмена);

2) внутрисферные – при их протекании происходят изменения в степени окисления центрального атома, в строении лигандов или изменения в координационной сфере (уменьшение или увеличение координационного числа).

Одним из важнейших свойств комплексных соединений является их диссоциация в водных растворах. Большинство растворимых в воде ионных комплексов – сильные электролиты , они диссоциируют на внешнюю и внутреннюю сферы:K 4 ↔ 4K + + 4 - .

Комплексные ионы достаточно устойчивы, они являются слабыми электролитами , ступенчато отщепляя в водный раствор лиганды:

4 - ↔ 3- +CN - (число ступе­ней равно числу лигандов).

Если суммар­ный заряд частицы комплексного соединения равен нулю, то имеем молекулу неэлектролита, например .

При обменных реакциях комплексные ионы переходят из од­них соединений в другие, не изменяя своего состава. Электролитическая диссоциация комплексных ионов подчиня­ется закону действующих масс и количественно характеризуется константой диссоциации, которая носит название константы нестой­кости К н. Чем меньше константа нестойкости комплекса, тем в меньшей сте­пени он распадается на ионы, тем устойчивее это соединение. У соединений, характеризуемых высокой К н, комплексные ионы неустойчивы, т. е. их практически нет в раство­ре, такие соединения являютсядвойными солями . Отличие между типичными представителями комплексных и двойных солейзаключается в том, что последние диссоци-ируют с образованием всех ионов, которые входят в состав этой соли, например:KA1(SO 4) 2 ↔ К + + А1 3+ + 2SO 4 2- (двойная соль);

К ↔ 4К + + 4- (комплексная соль).

Комплексные соединения

Урок-лекция 11 класс

Занятие, представленное на конкурс «Я иду на урок», я провожу в 11-м биолого-химическом классе, где на изучение химии отводится 4 часа в неделю.

Тему «Комплексные соединения» я взяла, во-первых, потому что эта группа веществ имеет исключительно большое значение в природе; во-вторых, многие задания ЕГЭ включают понятие о комплексных соединениях; в-третьих, учащиеся из этого класса выбирают профессии, связанные с химией, и будут встречаться с группой комплексных соединений в будущем.

Цель. Сформировать понятие о составе, классификации, строении и основах номенклатуры комплексных соединений; рассмотреть их химические свойства и показать значение; расширить представления учащихся о многообразии веществ.

Оборудование. Образцы комплексных соединений.

План урока

I. Организационный момент.

II. Изучение нового материала (лекция).

III. Подведение итогов и постановка домашнего задания.

План лекции

1. Многообразие веществ.

2. Координационная теория А.Вернера.

3. Строение комплексных соединений.

4. Классификация комплексных соединений.

5. Природа химической связи в комплексных соединениях.

6. Номенклатура комплексных соединений.

7. Химические свойства комплексных соединений.

8. Значение комплексных соединений.

ХОД УРОКА

I. Организационный момент

II. Изучение нового материала

Многообразие веществ

Мир веществ многообразен, и мы уже знакомы с группой веществ, которые принадлежат к комплексным соединениям. Данными веществами стали заниматься с XIX в., но понять их строение с позиций существовавших представлений о валентности было трудно.

Координационная теория А.Вернера

В 1893 г. швейцарским химиком-неоргаником Альфредом Вернером (1866–1919) была сформулирована теория, позволившая понять строение и некоторые свойства комплексных соединений и названная координационной теорией*. Поэтому комплексные соединения часто называют координационными соединениями.

Соединения, в состав которых входят сложные ионы, существующие как в кристалле, так и в растворе, называются комплексными, или координационными.

Строение комплексных соединений

Согласно теории Вернера центральное положение в комплексных соединениях занимает, как правило, ион металла, который называют центральным ионом, или комплексообразователем.

Комплексообразователь – частица (атом, ион или молекула), координирующая (располагающая) вокруг себя другие ионы или молекулы.

Комплексообразователь обычно имеет положительный заряд, является d -элементом, проявляет амфотерные свойства, имеет координационное число 4 или 6. Вокруг комплексообразователя располагаются (координируются) молекулы или кислотные остатки – лиганды (адденды).

Лиганды – частицы (молекулы и ионы), координируемые комплексообразователем и имеющие с ним непосредственно химические связи (например, ионы: Cl – , I – , NO 3 – , OH – ; нейтральные молекулы: NH 3 , H 2 O, CO).

Лиганды не связаны друг с другом, так как между ними действуют силы отталкивания. Когда лигандами являются молекулы, между ними возможно молекулярное взаимодействие. Координация лигандов около комплексообразователя является характерной чертой комплексных соединений (рис. 1).

Координационное число – это число химических связей, которые комплексообразователь образует с лигандами.

Рис. 2. Тетраэдрическая структура иона –

Значение координационного числа комплексообразователя зависит от его природы, степени окисления, природы лигандов и условий (температура, концентрация), при которых протекает реакция комплексообразования. Координационное число может иметь значения от 2 до 12. Наиболее распространенными являются координационные числа 4 и 6. Для координационного числа 4 структура комплексных частиц может быть тетраэдрической – (рис. 2) и в виде плоского квадрата (рис. 3). Комплексные соединения с координационным числом 6 имеют октаэдрическое строение 3– (рис. 4).

Рис. 4. Ион 3 – октаэдрического строения

Комплексообразователь и окружающие его лиганды составляют внутреннюю сферу комплекса. Частица, состоящая из комплексообразователя и окружающих лигандов, называется комплексным ионом. При изображении комплексных соединений внутреннюю сферу (комплексный ион) ограничивают квадратными скобками. Остальные составляющие комплексного соединения расположены во внешней сфере (рис. 5).

Суммарный заряд ионов внешней сферы должен быть равен по значению и противоположен по знаку заряду комплексного иона:

Классификация комплексных соединений

Большое многообразие комплексных соединений и их свойств не позволяет создать единую классификацию. Однако можно группировать вещества по некоторым отдельным признакам.

1) По составу.

2) По типу координируемых лигандов.

а) Аквакомплексы – это комплексные катионы, в которых лигандами являются молекулы H 2 O. Их образуют катионы металлов со степенью окисления +2 и больше, причем способность к образованию аквакомплексов у металлов одной группы периодической системы уменьшается сверху вниз.

Примеры аквакомплексов:

Cl 3 , (NO 3) 3 .

б)Гидроксокомплексы – это комплексные анионы, в которых лигандами являются гидроксид-ионы OH – . Комплексообразователями являются металлы, склонные к проявлению амфотерных свойств – Be, Zn, Al, Cr.

Например: Na, Ba.

в) Аммиакаты – это комплексные катионы, в которых лигандами являются молекулы NH 3 . Комплексообразователями являются d -элементы.

Например: SO 4 , Cl.

г) Ацидокомплексы – это комплексные анионы, в которых лигандами являются анионы неорганических и органических кислот.

Например: K 3 , Na 2 , K 4 .

3) По заряду внутренней сферы.

Природа химической связи в комплексных соединениях

Во внутренней сфере между комплексообразователем и лигандами существуют ковалентные связи, образованные в том числе и по донорно-акцепторному механизму. Для образования таких связей необходимо наличие свободных орбиталей у одних частиц (имеются у комплексообразователя) и неподеленных электронных пар у других частиц (лиганды). Роль донора (поставщика электронов) играет лиганд, а акцептором, принимающим электроны, является комплексообразователь. Донорно-акцепторная связь возникает как результат перекрывания свободных валентных орбиталей комплексообразователя с заполненными орбиталями донора.

Между внешней и внутренней сферой существует ионная связь. Приведем пример.

Электронное строение атома бериллия:

Электронное строение атома бериллия в возбужденном состоянии:

Электронное строение атома бериллия в комплексном ионе 2– :

Пунктирными стрелками показаны электроны фтора; две связи из четырех образованы по донорно-акцепторному механизму. В данном случае атом Be является акцептором, а ионы фтора – донорами, их свободные электронные пары заполняют гибридизованные орбитали (sp 3 -гибридизация).

Номенклатура комплексных соединений

Наибольшее распространение имеет номенклатура, рекомендованная IUPAC. Название комплексного аниона начинается с обозначения состава внутренней сферы: число лигандов обозначается греческими числительными: 2–ди, 3–три, 4–тетра, 5–пента, 6–гекса и т.д., далее следуют названия лигандов, к которым прибавляют соединительную гласную «о»: Cl – – хлоро-, CN – – циано-, OH – – гидроксо- и т.п. Если у комплексообразователя переменная степень окисления, то в скобках римскими цифрами указывают его степень окисления, а его название с суффиксом -ат: Zn – цинкат , Fe – феррат (III), Au – аурат (III). Последним называют катион внешней сферы в родительном падеже.

K 3 – гексацианоферрат(III) калия,

K 4 – гексацианоферрат(II) калия,

K 2 – тетрагидроксоцинкат калия.

Названия соединений, содержащих комплексный катион , строятся из названий анионов внешней среды, после которых указывается число лигандов, дается латинское название лиганда (молекула аммиака NH 3 – аммин, молекула воды H 2 O – аква от латинского названия воды) и русское название элемента-комплексообразователя; римской цифрой в скобках указывается степень окисления элемента-комплексообразователя, если она переменная. Например:

SO 4 – сульфат тетраамминмеди(II),

Cl 3 – хлорид гексаакваалюминия.

Химические свойства комплексных соединений

1. В растворе комплексные соединения ведут себя как сильные электролиты, т.е. полностью диссоциируют на катионы и анионы:

Cl 2 = Pt(NH 3) 4 ] 2+ + 2Cl – ,

K 2 = 2K + + 2– .

Диссоциация по такому типу называется первичной.

Вторичная диссоциация связана с удалением лигандов из внутренней сферы комплексного иона:

2– PtCl 3 – + Cl – .

Вторичная диссоциация происходит ступенчато: комплексные ионы ( 2–) являются слабыми электролитами.

2. При действии сильных кислот происходит разрушение гидроксокомплексов, например:

а) при недостатке кислоты

Na 3 + 3HCl = 3NaCl + Al(OH) 3 + 3H 2 O;

б) при избытке кислоты

Na 3 + 6HCl = 3NaCl + AlCl 3 + 6H 2 O.

3. Нагревание (термолиз) всех аммиакатов приводит к их разложению, например:

SO 4 CuSO 4 + 4NH 3 .

Значение комплексных соединений

Координационные соединения имеют исключительно большое значение в природе. Достаточно сказать, что почти все ферменты, многие гормоны, лекарства, биологически активные вещества представляют собой комплексные соединения. Например, гемоглобин крови, благодаря которому осуществляется перенос кислорода от легких к клеткам ткани, является комплексным соединением, содержащим железо (рис. 6), а хлорофилл, ответственный за фотосинтез в растениях, – комплексным соединением магния (рис. 7).

Значительную часть природных минералов, в том числе полиметаллических руд и силикатов, также составляют координационные соединения. Более того, химические методы извлечения металлов из руд, в частности меди, вольфрама, серебра, алюминия, платины, железа, золота и других, также связаны с образованием легкорастворимых, легкоплавких или летучих комплексов. Например: Na 3 – криолит, KNa 3 4 – нефелин (минералы, комплексные соединения, содержащие алюминий).

Современная химическая отрасль промышленности широко использует координационные соединения как катализаторы при синтезе высокомолекулярных соединений, при химической переработке нефти, в производстве кислот.

III. Подведение итогов и постановка домашнего задания

Домашнее задание.

1) Приготовиться по лекции к уроку-практикуму по теме: «Комплексные соединения».

2) Письменно дать характеристику следующим комплексным соединениям по строению и классифицировать по признакам:

K 3 , (NO 3) 3 , Na 2 , OH.

3) Написать уравнения реакций, при помощи которых можно осуществить превращения:

* За открытие этой новой области науки А.Вернер в 1913 г. был удостоен Нобелевской премии.

Соединения типа ВF 3 , СН 4 , NН 3 , Н 2 О, СО 2 и др., в которых элемент проявляет свою обычную максимальную валентность, называются валентно-насыщенными соединениями или соединениями первого порядка . При взаимодействии соединений первого порядка друг с другом образуются соединения высшего порядка. К соединениям высшего порядка относятся гидраты, аммиакаты, продукты присоединения кислот, органических молекул, двойные соли и многие др. Примеры образования комплексных соединений:

PtCl 4 + 2KCl = PtCl 4 ∙2KCl или K 2

CoCl 3 + 6NH 3 = CoCl 3 ∙6NH 3 или Cl 3 .

А. Вернер ввел в химию представления о соединениях высшего порядка и дал первое определение понятию комплексного соединения. Элементы после насыщения обычных валентностей способны проявлять еще и дополнительную валентность – координационную . Именно за счет координационной валентности и происходит образование соединений высшего порядка.

Комплексные соединения сложные вещества, в которых мож­но выделить центральный атом (комплексообразователь) и связанные с ним молекулы и ионы – лиганды.

Центральный атом и лиганды образуют комплекс (внутреннюю сферу), который при записи формулы комплексного соединения заключают в квадратные скоб­ки. Число лигандов во внутренней сфере называется координацион­ным числом. Молекулы и ионы, окружающие комплекс, образуют внешнюю сферу. Пример комплексной соли гексацианоферрат (III) калия К 3 (так называемая красная кровяная соль).

Центральными атомами могут быть ионы переходных металлов или атомы некоторых неметаллов (Р, Si). Лигандами могут служить анионы галогенов (F – , Cl – , Br – , I –), ОН – , СN – , СNS – , NO 2 – и др., нейтральные молекулы Н 2 О, NH 3 , СО, NO, F 2 , Cl 2 , Br 2 , I 2 , гидразин N 2 H 4 , этилендиамин NH 2 –CH 2 –CH 2 –NH 2 и др.

Координационная валентность (КВ) или координационное число – число мест во внутренней сфере комплекса, которые могут быть заняты лигандами . Координационное число обычно больше степени окисления комплексообразователя, зависит от природы комплексообразователя и лигандов. Чаще встречаются комплексные соединения с координационной валентностью 4, 6 и 2.

Координационная емкость лиганда число мест во внутренней сфере комплекса, занимаемых каждым лигандом. Для большинства лигандов координационная емкость равна единице, реже 2 (гидразин, этилендиамин) и более (ЭДТА - этилендиамминтетраацетат).

Заряд комплекса должен быть численно равен суммарному заряду внешней сферы и противоположным ему по знаку, но существуют и нейтральные комплексы. Степень окисления комплексообразователя равна и противоположна по знаку алгебраической сумме зарядов всех остальных ионов.

Систематические названия комплексных соединений формируются следующим образом: вначале называется в именительном падеже анион, затем раздельно в родительном падеже – катион. Лиганды в комплексе перечисляются слитно в следующем порядке: а) анионные; б) нейтральные; в) катионные. Анионы перечисляются в порядке H – , О 2– , ОН – , простые анионы, полиатомные анионы, органически анионы – в алфавитном порядке. Нейтральные лиганды называются так же, как молекулы, за исключением Н 2 О (аква) и NH 3 (аммин); к отрицательно заряженным ионам прибавляют соединительную гласную «о ». Число лигандов указывают приставками: ди-, три, тетра-, пента-, гекса- и т.д. Окончанием для анионных комплексов является «-ат » или «‑овая », если называется кислота; для катионных и нейтральных комплексов типичных окончаний нет.

H – тетрахлороаурат (III) водорода

(ОН) 2 – гидроксид тетраамминмеди (II)

Cl 4 – хлорид гексаамминплатина (IV)

– тетракарбонилникель

– гексацианоферрат (III) гексаамминкобальта (III)

Классификация комплексных соединений основана на различных принципах:

По принадлежности к определенному классу соединений :

- комплексные кислоты – H 2 , H 2 ;

- комплексные основания – (ОН) 2 ;

- комплексные соли – Li 3 , Cl 2 .

По природе лигандов:

- аквакомплексы (лигандами выступает вода) – SO 4 ∙H 2 O, [Со(Н 2 О) 6 ]Сl 2 ;

- аммиакаты (комплексы, лигандами в которых служат молекулы аммиака) – [Сu(NH 3) 4 ]SO 4 , Cl;

- ацидокомплексы (оксалатные, карбонатные, цианидные, галогенидные комплексы, содержащие в качестве лигандов анионы различных кислот) – K 2 , K 4 ;

- гидроксокомплексы (соединения с ОН-группами в виде лигандов) – К 3 [Аl(ОН) 6 ];

- хелатные или циклические комплексы (би- или полидентатный лиганд и центральный атом образуют цикл) – комплексы с аминоуксусной кислотой, ЭДТА; к хелатам относят хлорофилл (комплексообразователь – магний) и гемоглобин (комплексообразователь – железо).

По знаку заряда комплекса : катионные, анионные, нейтральные комплексы.

Особую группу составляют сверхкомплексные соединения. В них число лигандов превышает координационную валентность комплексообразователя. Так, в соединении CuSO 4 ∙5Н 2 О у меди координационная валентность равна четырем и во внутренней сфере координированы четыре молекулы воды, пятая молекула присоединяется к комплексу при помощи водородных связей: SO 4 ∙Н 2 О.

Лиганды связаны с центральным атомом донорно-акцепторной связью. В водном растворе комплексные соеди­нения могут диссоциировать с образованием комплексных ионов:

Cl ↔ + + Cl –

В незначительной степени, происходит диссоциация и внутренней сферы комплекса:

+ ↔ Ag + + 2NH 3

Мерой прочности комплекса есть константа нестойкости комплекса :

К нест + = C Ag + ∙ C2 NH 3 / C Ag(NH 3) 2 ] +

Вместо константы неустойчивости иногда пользуются обратной величиной, называемой константой устойчивости:

К уст = 1 / К нест

В умеренно разбавленных растворах многих комплексных солей существуют как комплексные, так и простые ионы. Дальнейшее разбавление может приводить к полному распаду комплексных ионов.

По простой электростатической модели В.Косселя и А.Магнуса, взаимодействие между комплексообразователем и ионными (или полярными) лигандами подчиняется закону Кулона. Устойчивый комплекс получается когда силы притяжения к ядру комплекса уравновешивают силы отталкивания между лигандами. Прочность комплекса увеличивается с ростом заряда ядра и уменьшением радиуса комплексообразователя и лигандов. Электростатическая модель очень наглядна, однако не в состоянии объяснить существование комплексов с неполярными лигандами и комплексообразователем в нулевой степени окисления; чем обусловлены магнитные и оптические свойства соединений.

Наглядным способом описания комплексных соединений является метод валентных связей (МВС), предложенный Полингом. В основе метода лежит ряд положений:

Связь между комплексообразователем и лигандами донорно-акцепторная. Лиганды предоставляют электронные пары, а ядро комплекса – свободные орбитали. Мерой прочности связи служит степень перекрывания орбиталей.

Орбитали центрального атома, участвующие в образовании связей, подвергаются гибридизации. Тип гибридизации определяется числом, природой и электронной структурой лигандов. Гибридизация электронных орбиталей комплексообразователя определяет геометрию комплекса.

Дополнительное упрочнение комплекса обусловлено тем, что наряду с σ-связями могут возникать и π-связи.

Магнитные свойства, проявляемые комплексом, объясняются исходя из заселенности орбиталей. При наличии неспаренных электронов комплекс парамагнитен. Спаренность электронов обусловливает диамагнетизм комплексного соединения.

МВС пригоден для описания только ограниченного круга веществ и не объясняет оптические свойства комплексных соединений, т.к. не учитывает возбужденные состояния.

Дальнейшим развитием электростатической теории на квантово-механической основе является теория кристаллического поля (ТКП). Согласно ТКП, связь между ядром комплекса и лигандами ионная или ион-дипольная. Основное внимание ТКП уделяет рассмотрению тех изменений, которые происходят в комплексообразователе под влиянием поля лигандов (расщепление энергетических уровней). Представление об энергетическом расщеплении комплексообразователя может быть использовано для объяснения магнитных свойств и окраски комплексных соединений.

ТКП приложима лишь к комплексным соединениям, в которых комплексообразователь (d -элемент) имеет свободные электроны, и не учитывает частично ковалентный характер связи комплексообразователь-лиганд.

Метод молекулярных орбиталей (ММО) учитывает детальную электронную структуру не только комплексообразователя, но и лигандов. Комплекс рассматривается как единая квантово-механическая система. Валентные электроны системы располагаются на многоцентровых молекулярных орбиталях, охватывающих ядра комплексообразователя и всех лигандов. Согласно ММО, рост энергии расщепления обусловлен дополнительным упрочнением ковалентной связи за счет π-связывания.

Комплексные соединения

Конспект урока-лекции

Цели. Сформировать представления о составе, строении, свойствах и номенклатуре комплексных соединений; развить навыки определения степени окисления у комплексообразователя, составления уравнений диссоциации комплексных соединений.
Новые понятия: комплексное соединение, комплексообразователь, лиганд, координационное число, внешняя и внутренняя сферы комплекса.
Оборудование и реактивы. Штатив с пробирками, концентрированный раствор аммиака, растворы сульфата меди(II), нитрата серебра, гидроксида натрия.

ХОД УРОКА

Лабораторный опыт. К раствору сульфата меди(II) прилить раствор аммиака. Жидкость окрасится в интенсивный синий цвет.

Что произошло? Химическая реакция? До сих пор мы не знали, что аммиак может реагировать с солью. Какое вещество образовалось? Каковы его формула, строение, название? К какому классу соединений его можно отнести? Может ли аммиак реагировать с другими солями? Есть ли соединения, аналогичные этому? Ответить на эти вопросы нам и предстоит сегодня.

Чтобы лучше изучить свойства некоторых соединений железа, меди, серебра, алюминия, нам потребуются знания о комплексных соединениях.

Продолжим наш опыт. Полученный раствор разделим на две части. К одной части прильем щелочь. Осадка гидроксида меди(II) Cu(OH) 2 не наблюдается, следовательно, в растворе нет двухзарядных ионов меди или их слишком мало. Отсюда можно заключить, что ионы меди вступают во взаимодействие с прибавленным аммиаком и образуют какие-то новые ионы, которые не дают нерастворимого соединения с ионами OH – .

В то же время ионы остаются неизменными. В этом можно убедиться, прибавив к аммиачному раствору раствор хлорида бария. Тотчас же выпадет белый осадок BaSO 4 .

Исследованиями установлено, что темно-синяя окраска аммиачного раствора обусловлена присутствием в нем сложных ионов 2+ , образовавшихся путем присоединения к иону меди четырех молекул аммиака. При испарении воды ионы 2+ связываются с ионами , и из раствора выделяются темно-синие кристаллы, состав которых выражается формулой SO 4 H 2 O.

Комплексными называют соединения, содержащие сложные ионы и молекулы, способные к существованию как в кристаллическом виде, так и в растворах.

Формулы молекул или ионов комплексных соединений обычно заключают в квадратные скобки. Комплексные соединения получают из обычных (некомплексных) соединений.

Примеры получения комплексных соединений

Строение комплексных соединений рассматривают на основе координационной теории, предложенной в 1893 г. швейцарским химиком Альфредом Вернером, лауреатом Нобелевской премии. Его научная деятельность проходила в Цюрихском университете. Ученый синтезировал много новых комплексных соединений, систематизировал ранее известные и вновь полученные комплексные соединения и разработал экспериментальные методы доказательства их строения.

А.Вернер
(1866–1919)

В соответствии с этой теорией в комплексных соединениях различают комплексообразователь , внешнюю и внутреннюю сферы . Комплексообразователем обычно является катион или нейтральный атом. Внутреннюю сферу составляет определенное число ионов или нейтральных молекул, которые прочно связаны с комплексообразователем. Их называют лигандами . Число лигандов определяет координационное число (КЧ) комплексообразователя.

Пример комплексного соединения

Рассмотренное в примере соединение SO 4 H 2 O или CuSO 4 5Н 2 О – это кристаллогидрат сульфата меди(II).

Определим составные части других комплексных соединений, например K 4 .
(Справка. Вещество с формулой HCN – это синильная кислота. Соли синильной кислоты называют цианидами.)

Комплексообразователь – ион железа Fe 2+ , лиганды – цианид-ионы СN – , координационное число равно шести. Все, что записано в квадратных скобках, – внутренняя сфера. Ионы калия образуют внешнюю сферу комплексного соединения.

Природа связи между центральным ионом (атомом) и лигандами может быть двоякой. С одной стороны, связь обусловлена силами электростатического притяжения. С другой – между центральным атомом и лигандами может образоваться связь по донорно-акцепторному механизму по аналогии с ионом аммония. Во многих комплексных соединениях связь между центральным ионом (атомом) и лигандами обусловлена как силами электростатического притяжения, так и связью, образующейся за счет неподеленных электронных пар комплексообразователя и свободных орбиталей лигандов.

Комплексные соединения, имеющие внешнюю сферу, являются сильными электролитами и в водных растворах диссоциируют практически нацело на комплексный ион и ионы внешней сферы. Например:

SO 4 2+ + .

При обменных реакциях комплексные ионы переходят из одних соединений в другие, не изменяя своего состава:

SO 4 + BaCl 2 = Cl 2 + BaSO 4 .

Внутренняя сфера может иметь положительный, отрицательный или нулевой заряд.

Если заряд лигандов компенсирует заряд комплексообразователя, то такие комплексные соединения называют нейтральными или комплексами-неэлектролитами: они состоят только из комплексообразователя и лигандов внутренней сферы.

Таким нейтральным комплексом является, например, .

Наиболее типичными комплексообразователями являются катионы d -элементов.

Лигандами могут быть:

а) полярные молекулы – NH 3 , Н 2 О, CO, NO;
б) простые ионы – F – , Cl – , Br – , I – , H – , H + ;
в) сложные ионы – CN – , SCN – , NO 2 – , OH – .

Pассмотрим таблицу, в которой приведены координационные числа некоторых комплексообразователей.

Номенклатура комплексных соединений. В соединении сначала называют анион, а затем катион. При указании состава внутренней сферы прежде всего называют анионы, прибавляя к латинскому названию суффикс -о- , например: Cl – – хлоро, CN – – циано, OH – – гидроксо и т.д. Далее называют нейтральные лиганды и в первую очередь аммиак и его производные. При этом пользуются терминами: для координированного аммиака – аммин , для воды – аква . Число лигандов указывают греческими словами: 1 – моно, 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса. Затем переходят к названию центрального атома. Если центральный атом входит в состав катионов, то используют русское название соответствующего элемента и в скобках указывают его степень окисления (римскими цифрами). Если центральный атом содержится в анионе, то употребляют латинское название элемента, а в конце прибавляют окончание -ат . В случае неэлектролитов степень окисления центрального атома не приводят, т.к. она однозначно определяется из условия электронейтральности комплекса.

Примеры. Чтобы назвать комплекс Сl 2 , определяют степень окисления (С.О.)
х комплексообразователя – иона Cu х + :

1 x + 2 (–1) = 0, x = +2, C.O.(Cu) = +2.

Аналогично находят степень окисления иона кобальта:

y + 2 (–1) + (–1) = 0, y = +3, С.О.(Со) = +3.

Чему равно координационное число кобальта в этом соединении? Сколько молекул и ионов окружает центральный ион? Координационное число кобальта равно шести.

Название комплексного иона пишут в одно слово. Степень окисления центрального атома обозначают римской цифрой, помещенной в круглые скобки. Например:

Cl 2 – хлорид тетраамминмеди(II),
NO 3 нитрат дихлороакватриамминкобальта(III),
K 3 – гексацианоферрат(III) калия,
K 2 – тетрахлороплатинат(II) калия,
– дихлоротетраамминцинк,
H 2 – гексахлорооловянная кислота.

На примере нескольких комплексных соединений определим структуру молекул (ион-комплексообразователь, его С.О., координационное число, лиганды, внутреннюю и внешнюю сферы), дадим название комплексу, запишем уравнения электролитической диссоциации.

K 4 – гексацианоферрат(II) калия,

K 4 4K + + 4– .

H – тетрахлорозолотая кислота (образуется при растворении золота в «царской водке»),

H H + + –.

OH – гидроксид диамминсеребра(I) (это вещество участвует в реакции «серебряного зеркала»),

OH + + OH – .

Na – тетрагидроксоалюминат натрия,

Na Na + + – .

К комплексным соединениям относятся и многие органические вещества, в частности, известные вам продукты взаимодействия аминов с водой и кислотами. Например, соли хлорид метиламмония и хлорид фениламмония являются комплексными соединениями. Согласно координационной теории они имеют следующее строение:

Здесь атом азота – комплексообразователь, атомы водорода при азоте, радикалы метил и фенил – лиганды. Вместе они образуют внутреннюю сферу. Во внешней сфере находятся хлорид-ионы.

Многие органические вещества, имеющие большое значение в жизнедеятельности организмов, представляют собой комплексные соединения. К ним относятся гемоглобин, хлорофилл, ферменты и др.

Комплексные соединения находят широкое применение:

1) в аналитической химии для определения многих ионов;
2) для разделения некоторых металлов и получения металлов высокой степени чистоты;
3) в качестве красителей;
4) для устранения жесткости воды;
5) в качестве катализаторов важных биохимических процессов.