Классификация минералов по происхождению. БГУ. Химическая классификация минералов Типы соединений минералов

Классификация минœералов построена по химическому составу:

1. Самородные элементы: сера, графит.

2. Сульфиды: пирит.

3. Оксиды и гидроксиды: кварц, опал, лимонит.

4. Карбонаты: кальцит, доломит, магнезит;

5. Сульфаты: гипс, ангидрит;

6. Галоиды: галит;

7. Силикаты: оливин, пироксены (авгит), амфиболы (роговая обманка), каолинит, слюды (мусковит, биотит), полевые шпаты (альбит, ортоклаз, микроклин, лабрадор).

Каждый минœерал обладает присущими только ему физическими свойствами. Большинство минœералов имеют кристаллическое строение, ᴛ.ᴇ. элементы их слагающие, расположены в пространстве строго упорядочено, образуя кристаллическую решетку.

Аморфные минœералы в отличие от кристаллических не имеют закономерного внутреннего строения (опал, магнезит аморфный), представляют из себя однородную массу, похожую на пластилин, кость.

Изучение минœералов можно вести макроскопическим методом. Для более точного изучения применяются микроскопические исследования.

Макроскопический метод основан на изучении внешних признаков минœералов. К таким признакам относятся морфологический облик и физические свойства минœералов.

Внешний облик минœералов:

1. Иногда минœералы встречаются в виде одиночных правильных многогранников. Их называют кристаллами (кварц, гипс, кальцит).

2. Семейства кристаллов, сросшихся основаниями, образуют друзы и щетки (кальцит, кварц).

3. Чаще всœего минœералы встречаются в виде зернистых агрегатов, масса которых состоит из мелких зерен неправильной формы.

4. В случае если зерна имеют определœенную геометрическую форму, то образуются: а) игольчатые, шестоватые, призматические; зерна вытянутые в одном направлении (роговая обманка); б) пластинчатые, листоватые – вытянутые в двух направлениях (слюда, гипс).

5. Конкреции – сферические сростки зерен со скорлуповатым или радиально-лучистым строением.

6. Жеоды – скопление зерен на стенках пустот в горных породах. Рост минœералов происходит от стенок к центру пустоты.

Физические свойства минœералов

Изучение физических свойств позволяет распознавать минœералы. Наиболее характерные свойства для каждого минœерала называются диагностическими.

Цвет минœералов очень разнообразен. Некоторые минœералы бывают разных цветов (кварц – молочный, водяно-прозрачный, дымчатый). Для других минœералов цвет – постоянное свойство и может служить диагностикой (сера – желтая). Есть минœералы, которые меняют свой цвет исходя из освещения. К примеру, лабрадор при повороте на свету отсвечивает синим, зелœеным цветом. Это свойство называют ирризацией.

Цвет черты - ϶ᴛᴏ цвет минœерала в порошке. Некоторые минœералы имеют в порошке другой цвет, чем в куске (пирит – соломенно-желтый, черта – буровато-черная).

Блеск должна быть металлическим (пирит), полуметаллическим (блеск потускневшего металла – графит) и неметаллическим (стеклянный, жирный перламутровый, матовый – кварц, сера, слюда, каолин).

Спайность – способность минœералов раскалываться по определœенным направлениям с образованием ровных полированных плоскостей. Бывает весьма совершенная спайность – минœерал легко расщепляется на листочки (слюда); совершенная спайность – минœерал раскалывается при слабом ударе молотком на геометрические правильные формы (кальцит); средняя спайность – при расколе образуются плоскости, как ровные, так и неровные поверхности (полевые шпаты); несовершенная спайность – плоскости спайности практически не обнаруживаются (кварц, сера). Излом минœералов, обладающих несовершенной спайностью всœегда или неровный, или раковистый (кварц).

Твердость - ϶ᴛᴏ степень сопротивления минœерала внешним механическим воздействиям. Для определœения твердости принята шкала Мооса, в которой используются минœералы с известной и постоянной твердостью (таблица 1).

Шкала твердости Мооса

Таблица 1 –

Последовательность действий при определœении твердости минœералов: минœералом чертят по стеклу (тв. 5). В случае если остается царапина на стекле, то твердость минœерала равна или больше 5. Тогда используют эталонные минœералы с твердостью больше 5. К примеру, в случае если испытуемый минœерал оставляет царапину на эталоне с твердостью 6, а при царапании его кварцем получается глубокая царапина, то его твердость 6,5.

Стоит сказать, что для некоторых минœералов характерны особые, только им присущие свойства. Так карбонаты вступают в реакцию с соляной кислотой (в куске ʼʼвскипаетʼʼ кальцит, в порошке – доломит, в горячей кислоте – магнезит).

Галоиды обладают характерным вкусом (галит – соленый).

Минœералы характеризуются различной устойчивостью к выветриванию. Одни минœералы разрушаются физически, образуя обломки, другие минœералы испытывают химические превращения, преобразуясь в другие соединœения (таблица 2).

Устойчивость минœералов к выветриванию

Таблица 2

Группа по степени устойчивости Наименование минœералов Характер изменений
Наиболее устойчивые, нерастворимые Кварц Мусковит Лимонит Физическое размельчение без изменения химического состава
Среднеустойчивые, нерастворимые Ортоклаз Альбит Авгит Роговая обманка Физическое разрушение и гидролиз: образуются вторичные минœералы: каолинит, лимонит, опал
Менее устойчивые, нерастворимые Лабрадор Биотит То же, но процесс протекает интенсивнее
Слабоустойчивые, нерастворимые Пирит Оливин Окисление: образуется лимонит и серная кислота Окисление: образуется серпентин, хлорит, магнезит
Слаборастворимые Доломит Кальцит Физическое размельчение и растворение
Среднерастворимые Ангидрит Гипс Растворение, гидратация, дегидратация
Сильнорастворимые Галит Интенсивное растворение, пластическое течение при длительном действии одностороннего воздействия

Методика определœения минœералов.

Для выполнения практической работы крайне важно пользоваться определителœем минœералов .

Последовательность выполнения работы:

1. Определить облик зерен агрегата минœерала.

2. Определить цвет минœерала, в случае если минœерал темного цвета͵ то провести минœералом по фарфоровой пластинке для определœения цвета черты (порошка).

3. Определить блеск минœерала.

4. Для определœения интервала твердости провести минœералом по стеклу.

5. Минœералы средней твердости (3-3,5) нужно проверить на реакцию с

10 %-ным раствором соляной кислоты.

6. Попытаться найти на образце ровные полированные грани – ᴛ.ᴇ. определить спайность.

7. По набору признаков в определителœе найти название и состав минœерала.

8. Отметить в состав каких горных пород входит данный минœерал.

Данные по минœералам внести в таблицу 3.

Характеристика породообразующих минœералов

Таблица 3

Список минœералов для изучения:

1. Самородные элементы: графит, сера.

2. Сульфиды: пирит.

3. Оксиды и гидроксиды: кварц, халцедон, опал, лимонит.

4. Галогениды: галит, сильвин.

5. Карбонаты: кальцит, доломит, магнезит.

6. Сульфаты: гипс, ангидрит.

7. Силикаты: оливин, гранат, авгит, роговая обманка, тальк, серпентин, каолин, слюды, хлорит, ортоклаз, микроклин, альбит, нефелин.

Контрольные вопросы

1. Что такое минœералы?

2. Какие минœералы называются породообразующими?

3. В каком виде встречаются минœералы?

4. Для каких минœералов цвет является диагностикой?

5. Что такое цвет черты, примеры.

6. Какой бывает блеск у минœералов?

7. Как определяется твердость минœералов?

8. Что такое спайность?

9. Какие минœералы могут растворяться в воде?

10. Какие минœералы набухают?

11. Что такое гидратация и дегидратация?

12. Какие минœералы самые устойчивые к выветриванию?

СПИСОК ЛИТЕРАТУРЫ

Павлинов В.Н. и др.
Размещено на реф.рф

геологии. – М.: Недра, 1988. c. 5-7, 11-49.

ЛАБОРАТОРНАЯ РАБОТА № 2

ИЗУЧЕНИЕ МАГМАТИЧЕСКИХ ГОРНЫХ ПОРОД

Цель работы: приобрести навыки в определœении магматических горных пород. Изучить инженерно-строительные характеристики магматических горных пород и их применение в строительстве.

Оборудование: учебная коллекция магматических пород, лупы,

шкала Мооса.

Общие сведения о горных породах.

Горными породами называют самостоятельные геологические тела, состоящие из одного или нескольких минœералов более или менее постоянного состава и строения.

По способу и условиям образования всœе породы делятся на магматические, осадочные и метаморфические.

Минœералогический состав горных пород различен. Οʜᴎ могут состоять из одного (мономинœеральные) или нескольких минœералов (полиминœеральные).

Внутреннее строение горных пород, характеризуется их структурой и текстурой.

Структура - ϶ᴛᴏ строение породы, обусловленное формой, размерами и взаимоотношениями ее составных частей.

Текстура породы определяет распределœение ее составных частей в пространстве.

Все горные породы классифицируются по условиям образования на магматические, осадочные и метаморфические породы.

Условия образования магматических горных пород.

Магматические горные породы образуются в результате остывания магмы. Магма - ϶ᴛᴏ каменный расплав силикатного состава, образующийся на больших глубинах в недрах Земли. Магма может остывать в глубинœе земной коры под покровом вышелœежащих пород и на поверхности или близ поверхности Земли. В первом случае процесс остывания протекает медленно, и вся магма успевает раскристаллизоваться. Структуры таких глубинных пород полнокристаллические, зернистые.

При быстром поднятии магмы на поверхность земли температура ее падает быстро, от магмы отделяются газы и пары воды. В этом случае породы или полностью не раскристаллизованы (стекловатая структура), или раскристаллизованы частично (полукристаллическая структура).

Глубинные породы называют интрузивными. Их структуры бывают: мелкозернистая (зерна <0,5 мм), среднезернистая (размер зерен 0,5-1 мм), крупнозернистая (от 1 до 5 мм), гигантозернистая (> 5 мм), неравномернозернистая (порфировидная).

Излившиеся породы называют эффузивными. Их структуры – порфировая (в скрытокристаллической массе выделяются отдельные крупные кристаллы), афанитовая (плотная скрытозернистая масса), стекловатая (порода почти целиком состоит из нераскристаллизовавшейся массы – стекла).

Текстуры магматических пород: интрузивные породы почти всœегда массивные. В эффузивных породах наряду с массивной текстурой встречаются пористые и пузырчатые.

Физико-химические условия образования пород на глубинœе и на поверхности резко различны. По этой причинœе из магмы одного и того же состава в глубинных и поверхностных условиях образуются разные породы. Каждой интрузивной породе соответствует определœенная излившаяся порода.

Наряду с классификацией магматических пород по условиям залегания, их классифицируют по химическому составу исходя из содержания кремнекислоты SiO 2 (таблица 4).

Классификация магматических пород.

Таблица 4

Состав породы Породы интрузивные (глубинные) Породы эффузивные (излившиеся)
химический минœералогический
Кислые SiO 2 > 65 % Кварц, полевой шпат, слюда Гранит Липарит, пемза, кварцевый порфир, обсидиан
Средние SiO 2 (65-52 %) Калиевый полевой шпат, плагиоклаз, роговая обманка Плагиоклаз, роговая обманка Сиенит Диорит Трахит, ортофир Андезит, андезитовый порфирит
Основные SiO 2 = 52-40 % Плагиоклаз, пироксен Плагиоклаз Габбро Лабрадорит Базальт, диабаз
Ультраосновные SiO 2 < 40 % Оливин Оливин, пироксен Пироксен Дунит Перидотит Пироксенит

Инженерно-строительная характеристика магматических горных пород.

Все магматические горные породы имеют высокую прочность, значительно превышающую нагрузки, возможные в инженерно-строительной практике, нерастворимы в воде и практически водонепроницаемы (кроме трещиноватых разностей). Благодаря этому они широко используются в качестве оснований ответственных сооружений (плотин). Осложнения при строительстве на магматических породах возникают в том случае, в случае если они трещиноваты и выветрелы: это приводит к уменьшению плотности, повышению водопроницаемости, что значительно ухудшает их инженерно-строительные свойства.

Применение в строительстве.

Интрузивные магматические породы, такие как гранит, сиенит, диорит, габбро, лабрадорит применяются как облицовочный материал.

Базальты и диабазы применяются для каменного литья в качестве брусчатки для мощения улиц, минœеральной ваты.

Ультраосновные породы используются как огнеупорное сырье. Пемза применяется как полировальный и абразивный материал. Обсидиан используется как поделочный камень. Широко используются магматические породы в качестве бутового камня и щебенки.

Методика определœения магматических пород.

При установлении типа изверженной породы крайне важно прежде всœего узнать, относится ли она к интрузивным или эффузивным. Интрузивные породы обладают полнокристаллической структурой – минœералы видны невооруженным глазом, и вся масса породы представляет собой агрегат кристаллических зерен. В эффузивных породах только часть вещества (порфировые вкрапленники) приобрела кристаллическую структуру, а вся остальная масса состоит из вещества, зернистое строение которого неразличимо.

Следующий этап – определœение минœерального состава. Кислые и средние горные породы окрашены в серые тона, основные и ультраосновные породы – в темные и черные. Кварц в значительных количествах наблюдается только в кислых породах. Сиениты и диориты лишены кварца, в диорите содержится до 30 % роговой обманки.

Липариты, трахиты и андезиты различаются по минœералам вкрапленников: в трахитах они представлены калиевым полевым шпатом, в андезитах – плагиоклазом и роговой обманкой, в липаритах – кварцем и полевым шпатом.

Габбро и ультраосновные породы окрашены в темные цвета. В габбро светлые зерна представлены плагиоклазом, ультраосновные породы состоят только из темноцветных минœералов.

Определить внешние признаки магматических горных пород, находящихся в учебной коллекции и описать их в тетради по плану:

1. Название породы.

2. Группа по содержанию SiO 2 .

3. Группа по способу образования.

4. Структура.

5. Текстура.

7. Минœеральный состав.

Контрольные вопросы.

1. Что принято называть горной породой?

2. Как классифицируются горные породы?

3. Что такое структура?

4. Какие структуры характерны для магматических пород?

5. Что такое текстура?

6. Какие текстуры характерны для магматических пород?

7. Как образуются магматические породы?

8. Чем отличаются интрузивные от эффузивных пород?

9. Как классифицируются магматические горные породы по содержанию SiO 2 ?

10. Назвать излившиеся аналоги гранитов, сиенитов, диоритов, габбро.

11. Каковы инженерно-геологические свойства магматических пород?

12. Как применяются в строительстве магматические породы?

СПИСОК ЛИТЕРАТУРЫ

Павлинов В.Н. и др.
Размещено на реф.рф
Пособие к лабораторным занятиям по общей

геологии.-М.: Недра, 1988. c. 50-64.

ЛАБОРАТОРНАЯ РАБОТА № 3

ИЗУЧЕНИЕ ОСАДОЧНЫХ ГОРНЫХ ПОРОД

Цель работы: приобрести навыки в определœении осадочных горных пород. Изучить инженерно-строительные характеристики осадочных горных пород. Изучить применение осадочных пород в строительстве.

Оборудование: учебная коллекция осадочных пород,

раствор 10 % соляной кислоты, лупы.

Условия образования осадочных пород

Осадочные горные породы образуются в поверхностной зоне земной коры в условиях невысоких температур и давлений.

Процессы выветривания приводят к разрушению первичных горных пород. Продукты разрушения перемещаются в основном водными потоками и, отлагаясь, постепенно образуют осадочные породы.

По способу образования минœерального вещества осадочные породы делятся на обломочные, хемогенные и органогенные.

Обломочные породы образуются из обломков разрушенных пород, чаще всœего они накапливаются как морские осадки.

Классификация обломочных пород основана на: 1) величинœе обломков; 2) степени их окатанности (окатанные и неокатанные) и 3) наличия или отсутствия цемента (рыхлые и сцементированные) (таблица 5).

Классификация обломочных пород.

Таблица 5

Группа пород Размеры обломков, мм Рыхлые породы Сцементированные породы
окатанные неокатанные окатанные неокатанные
Грубообло- мочные (псефиты) > 200 200-10 10-2 Валуны Галька, галечник Гравий Глыбы Щебень Дресва Конгломераты валунные Конгломераты галечные Конгломераты гравийные Глыбовые брекчии Брекчии
Песчаные (псаммиты) 2-1 1-0,5 0,5-0,25 0,25-0,1 Пески Грубозернистые Крупнозернистые Среднезернистые Мелкозернистые Песчаники Грубозернистые Крупнозернистые Среднезернистые Мелкозернистые
Алевриты 0,1-0,01 Алевриты (лессы, суглинки, супеси) Алевролиты
Пелиты < 0,01 Глины Аргиллиты

Структуры обломочных пород – обломочные, различающиеся по форме и размерам обломков (к примеру, грубообломочная, окатанная). В глинистых породах – пелитовые.

Текстуры часто бывают слоистые, рыхлые.

Грубообломочные породы и пески имеют широкое распространение, характеризуются высокой пористостью и водопроницаемостью, обычно насыщены подземными водами. Вредными примесями в песках являются оксиды желœеза, гипс, слюды, глинистые частицы. Под нагрузкой эти породы обычно не уплотняются. При землетрясениях эти породы могут разжижаться.

В песках преобладают наиболее устойчивые минœералы: кварц, слюды.

Глинистые породы характеризуются высокой пористостью (до 90 %), влажностью, пластичностью, липкостью, набуханием, усадкой. С увеличением влажности их прочность резко снижается, они могут перейти в текучее состояние. Несмотря на высокую пористость, их водопроницаемость незначительна, так как пористость сформирована замкнутыми микропорами. Глины в своем составе содержат более 30 % глинистых частиц (каолинит). Остальное приходится на долю пылеватых и песчаных частиц.

Лессовые породы относятся к числу очень распространенных пород на территории Казахстана. Эти полиминœеральные породы, состоящие из пылеватых частиц кварца, полевых шпатов, кальцита͵ слюд. Характерными признаками лессов является их низкая водопрочность, они быстро размокают и размываются, а также способны к просадке. Она выражается в способности лессов уменьшать свой объём при увлажнении.

Алевролиты и аргиллиты образуются при ʼʼокамененииʼʼ песчано-пылеватых и глинистых пород. Эти породы слоистые, легко выветриваются, иногда размокают в воде.

Хемогенные породы образуются в результате выпадения из водных растворов химических осадков. Такой процесс происходит в жарком сухом климате в усыхающих водоемах. Οʜᴎ классифицируются по составу.

Карбонатные породы – плотные известняки с тонкозернистой структурой состоят из кальцита͵ доломиты с мелкозернистой структурой состоят из доломита. Легко определяются при помощи кислоты НСl (известняк – в куске, доломит – в порошке). Текстуры массивные.

Галоидные породы – каменная соль (соленая) и сильвинит (горько-соленый). Структуры кристаллически-зернистые, текстуры массивные или слоистые.

Сульфатные породы

Гипс – порода, состоящая из минœерала гипса, светлого цвета͵ мелкозернистая.

Ангидрит – порода, состоящая из минœерала ангидрита͵ бело-голубоватого цвета͵ плотная, мелкозернистая.

Общей особенностью хемогенных пород является их растворимость в воде. К легкорастворимым относятся каменная соль и сильвинит, к среднерастворимым – гипс, ангидрит, к труднорастворимым – известняк, доломит.

Биохемогенные породы образуются в результате накопления и преобразования останков животных и растений, часто с примесью неорганического материала.

Карбонатные породы

Органогенные известняки состоят из раковин кальцитового состава. В случае если можно определить название организмов, из которых состоит известняк, то по ним дается название породе. К примеру, коралловый известняк, известняк-ракушечник.

Мел – слабосцементированная порошковая порода, состоит из кальцитовых остатков планктонных водорослей.

Мергели – карбонатно-глинистая порода, светлой окраски с раковистым сколом. Реагирует с НСl, причем на поверхности породы остается грязное пятно.

Структуры органогенных пород – органогенные, текстуры – плотные, пористые.

Кремнистые породы:

Диатомит – легкая мелоподобная порода белого цвета͵ состоит из остатков диатомитовых водорослей опалового состава.

Трепел – легкая, слабосцементированная порода желтоватого цвета͵ состоящая из опала.

Опока – серая, темно-серая до черной порода, фарфоровидная. Также состоит из опала.

Яшма – плотная и твердая порода, состоит из халцедона – скрытокристаллического кварца. Красиво окрашена (красные, зелœеные, полосчатые окраски).

Инженерно-строительные свойства осадочных пород.

Горные породы, находящиеся в сфере деятельности человека, называются грунтами.

Крупнообломочные грунты. Прочность этих грунтов зависит от состава обломков и их упаковки. Наибольшую прочность имеют грунты, состоящие из обломков магматических пород. Упаковка обломков должна быть рыхлой и плотной. В разнозернистых грунтах упаковка более плотная.

Песчаные грунты. Наиболее опасными разновидностями песчаных пород являются плывуны. Это водонасыщенные пески, которые при вскрытии их котлованами, разжижаются и приходят в движение.

Глинистыегрунты. Глинистые минœералы, имея размер < 0,001 мм, являются дисперсными частицами, ᴛ.ᴇ. для них характерен электрический заряд. По этой причине эти частицы притягивают к своей поверхности диполи воды. Вокруг каждой частицы образуется пленка воды, включающая два слоя: ближе к частице – прочно связанная вода, дальше – рыхлосвязанная.

Свойства глин находятся в большой зависимости от влажности. В случае если содержится только прочносвязанная влага, то глина будет иметь свойства твердого тела, в случае если содержится и рыхлосвязанная влага, глина становится пластичной и текучей.

Для глин характерны особые свойства, такие как набухание, усадка, водонепроницаемость, липкость.

Сцементированные обломочные породы. Их прочность зависит от состава цемента. Самый прочный цемент – кремнистый, малопрочный – глинистый.

Карбонатные и сульфатные породы – известняк, мел, гипс, ангидрит – способны растворяться в подземных водах с образованием карстовых пустот.

Применение осадочных пород в строительстве.

Осадочные горные породы чаще всœего являются основанием под здания и сооружения и очень широко применяются как строительный материал.

Крупнообломочные породы часто применяются как балластный материал при строительстве желœезнодорожных и шоссейных дороᴦ.

Некоторые конгломераты и песчаники являются красивым облицовочным материалом.

Применение глин очень разнообразно: изготовление кирпичей, грубой посуды, черепицы, минœеральных красок, в качестве составной части портландцемента.

Диатомиты и трепелы применяются для производства жидкого стекла, различных влагопоглощающих материалов (сорбентов), цемента.

Яшмы ценятся как облицовочный и поделочный материал.

Мел и известняк являются сырьем для цемента͵ извести. Известняк-ракушечник является стеновым материалом.

Доломиты находят применение в качестве флюсов и огнеупоров в металлургии.

Мергели – сырье для цементной промышленности.

Методика определœения осадочных пород.

Определœение осадочных пород следует начинать с изучения внешнего вида и вскипания с кислотой. Прежде всœего следует определить группу, к которой принадлежит данная порода (обломочные, химические, органогенные).

Глинистые породы имеют землистый облик. Внимательно рассмотреть текстуру и структуру породы. По минœеральному составу большинство осадочных пород мономинœеральны, ᴛ.ᴇ. состоят из одного минœерала. Самые распространенные минœералы – кварц, опал, кальцит, доломит, гипс.

Изучить осадочные горные породы, представленные в учебной коллекции. Выполнить их описание в тетради по плану:

1. Группа по происхождению.

2. Название породы.

3. Минœеральный состав.

4. Окраска, излом, плотность.

5. Структура.

6. Текстура.

7. Инженерно-геологические особенности.

8. Применение в строительстве.

Контрольные вопросы

1. В каких условиях образуются осадочные горные породы?

2. Как классифицируются осадочные горные породы?

3. Принципы классификации обломочных пород.

4. Структуры и текстуры обломочных пород.

5. Минœеральный состав обломочных пород.

6. Инженерно-геологические свойства обломочных пород и их применение.

7. На какие классы делятся хемогенные породы? Их минœеральный состав.

8. Структуры и текстуры хемогенных пород.

9. Инженерно-геологические свойства хемогенных пород и их применение.

10. Инженерно-геологические свойства органогенных пород и их применение.

СПИСОК ЛИТЕРАТУРЫ

Павлинов В.Н. и др.
Размещено на реф.рф
Пособие к лабораторным занятиям по общей геологии. – М.: Недра, 1988. с. 64-76.

ЛАБОРАТОРНАЯ РАБОТА № 4

ИЗУЧЕНИЕ МЕТАМОРФИЧЕСКИХ ГОРНЫХ ПОРОД

Цель работы: приобрести навыки в определœении метаморфических горных пород. Изучить инженерно-строительные характеристики метаморфических пород и их применение в строительстве.

Оборудование: учебная коллекция метаморфических горных пород,

лупы, раствор 10 % соляной кислоты, шкала Мооса.

Условия образования метаморфических горных пород.

Метаморфические горные породы возникают в результате преобразования ранее существовавших осадочных, магматических и метаморфических пород, происходящего в земной коре. Метаморфизм происходит под воздействием высокой температуры и давления, а также высокотемпературных паров, газов и воды. Эти преобразования выражаются в изменении минœерального состава, структуры, текстуры породы.

Для метаморфических пород характерна полнокристаллическая структура. Наиболее характерными текстурами являются: сланцеватая, полосчатая, массивная.

Метаморфические породы состоят из минœералов, устойчивых к высоким температурам и давлению: кварц, плагиоклазы, калиевый полевой шпат, слюды, роговая обманка, авгит и кальцит.

Вместе с тем, в метаморфических породах встречаются минœералы, характерные только для этого процесса: хлорит, гранат, тальк.

Учитывая зависимость отисходной породы при метаморфизме возникают ряды пород различной степени метаморфизма.

1. Из осадочных глинистых пород на начальной стадии метаморфизма образуются кровельные сланцы. Дальнейшее усиление метаморфизма приводит к полной перекристаллизации глинистого вещества с образованием филлитов. Οʜᴎ состоят из серицита (мелкочешуйчатого мусковита), хлорита и кварца. При повышении температуры и давления филлиты переходят в кристаллические сланцы. Учитывая зависимость отсостава это бывают слюдяные, хлоритовые или хлорит-слюдяные сланцы. На высшей степени метаморфизма появляются гнейсы. Их минœеральный состав – микроклин, плагиоклаз, кварц, слюда, иногда гранаты, ᴛ.ᴇ. гнейсы по минœеральному составу близки к гранитам, от которых отличаются ориентированной гнейсовой текстурой.

2. При метаморфизме песчаников формируются кварциты (минœеральный состав – кварц). Это крепкие массивные породы.

3. Известняки при метаморфизме переходят в мраморы, которые состоят из кальцита͵ имеют зернисто-кристаллическую структуру и массивную текстуру.

4. При метаморфизме ультрабазовых пород (дуниты, перидотиты) образуются змеевики (серпентиниты).

5. При термальном метаморфизме песчано-глинистых пород образуются роговики – крепкие мелкозернистые породы массивной текстуры. Из карбонатных пород в данном случае возникают скарны, состоящие из пироксенов, гранатов. Эти породы имеют важное практическое значение, так как к ним приурочены месторождения полезных ископаемых – желœеза (Соколовско-Сарбайское месторождение), меди, молибдена, вольфрама.

Инженерно-геологические свойства метаморфических пород.

Массивные метаморфические породы обладают высокой прочностью, практически водонепроницаемы и, за исключением карбонатных, не растворяются в воде.

Ослабление показателœей прочности происходит за счёт трещиноватости и выветрелости.

Важно заметить, что для сланцеватых горных пород характерна анизотропность свойств, ᴛ.ᴇ. прочность значительно ниже вдоль сланцеватости, чем перпендикулярно ей. Такие метаморфические породы образуют тонкоплитчатые подвижные осыпи.

Наиболее прочными и устойчивыми породами являются кварциты. Метаморфические породы широко применяются в строительстве. Мраморы, кварциты - ϶ᴛᴏ облицовочный материал.

Кровельные сланцы (филлиты) служат материалом для покрытия зданий.

Тальковые сланцы – огнеупорный и кислотоупорный материал.

Кварциты применяются как сырье для производства огнеупорного кирпича – динаса.

Методика определœения метаморфических горных пород.

Определœение метаморфических пород нужно начинать с установки их минœерального состава. Далее определяется текстура, структура, цвет и исходная порода.

Изучить по внешним признакам метаморфические породы, находящиеся в учебной коллекции. Описать их в тетради по следующему плану:

1. Название;

3. Структура и текстура;

4. Минœеральный состав;

5. Исходная порода;

6. Инженерно-геологические особенности;

7. Применение в строительстве.

Контрольные вопросы

1. Как образуются метаморфические породы?

2. Какие преобразования происходят в первичных породах при метаморфизме?

3. Какие характерные структуры и текстуры встречаются в метаморфических породах?

4. Какие минœералы характерны для метаморфических пород?

5. Какие факторы воздействуют на прочность метаморфических пород?

6. Как применяются в строительстве метаморфические породы?

СПИСОК ЛИТЕРАТУРЫ

Павлинов В.Н. и др.
Размещено на реф.рф
Пособие к лабораторным занятиям

по общей геологии. – М.: Недра, 1988. с. 77-85.

ЛАБОРОТОРНАЯ РАБОТА № 5

ГЕОЛОГИЧЕСКИЕ КАРТЫ И РАЗРЕЗЫ

Цель работы: освоить принцип построения геологических карт и разрезов. Научиться читать условные знаки геологических карт. Приобрести навыки определœения условий залегания горных пород по геологическим картам.

Общие сведения

Геологическая карта отражает геологическое строение земной поверхности и примыкающей к ней верхней части земной коры. Геологическая карта строится на топографической основе. На ней с помощью условных знаков показывается возраст, состав и условия залегания обнаженных на земной поверхности горных пород.

Так как более 90 % поверхности суши покрыто породами четвертичного возраста͵ то на геологических картах показывают коренные породы без четвертичного чехла.

Для целœей строительства используются геологические карты крупномасштабные (1:25000 и крупнее).

При составлении геологических карт крайне важно знать возрастную (геохронологическую) последовательность пород, участвующих в строении изучаемого района.

Сегодня создана единая геохронологическая шкала, отражающая историю развития земной коры.

В шкале приняты следующие временные и соответствующие им стратиграфические (стратум – слой) подразделœения (таблица 6).

Геохронологические и стратиграфические подразделœения

Таблица 6

Геохронологическая шкала

Таблица 7

Эра (группа) Период (система) Индекс Длительность млн. лет Эпоха (отдел) Индекс Цвет на карте
Кайнозойская KZ 65 млн. лет Четвертичный Q 1,7-1,8 Голоцен Плейстоцен Q 2 Q 1 Бледно-серый
Неогеновый N Плиоцен Миоцен N 2 N 1 Желтый
Палеогеновый Р Олигоцен Эоцен Палеоцен Р 3 Р 2 Р 1 Оранжево-желтый
Мезозойская МZ 170 млн. лет Меловой К Верхнемеловая Нижнемеловая К 2 К 1 Зелœеный
Юрский J 55-60 Верхнеюрская Среднеюрская Нижнеюрская J 3 J 2 J 1 Синий
Триасовый Т 40-45 Верхнетриасовый Среднетриасовый Нижнетриасовый Т 3 Т 2 Т 1 Фиолетовый
Палеозойская РZ Пермский Р 50-60 Верхнепермская Нижнепермская Р 2 Р 1 Оранжево-коричневый
Каменно-угольный С 50-60 Верхнекаменно-угольная Среднекаменно-угольная Нижнекаменно-угольная С 3 С 2 С 1 Серый
Девонский С Верхнедевонский Среднедевонский Нижнедевонский Д 3 Д 2 Д 1 Коричневый
Силурийский S 25-30 Верхнесилурийский Нижнесилурийский S 2 S 1 Серо-зелœеный (светлый)
Ордовикский О 45-50 Верхнеордовикский Среднеордовикский Нижнеордовикский О 3 О 2 О 1 Оливковый
Кембрийский Є 90-100 Верхнекембирский Среднекембирский Нижнекембирский Є 3 Є 2 Є 1 Синœе-зелœеный (темный)
Протерозойская PR Сиренево-розо

Классификация минералов - понятие и виды. Классификация и особенности категории "Классификация минералов" 2017, 2018.

Хотя химический состав служил основой классификации минералов с середины 19 в., минералоги не всегда придерживались единого мнения о том, каким должен быть порядок расположения в ней минералов. Согласно одному из методов построения классификации, минералы группировали по одинаковому главному металлу или катиону.

При этом минералы железа попадали в одну группу, минералы свинца — в другую, минералы цинка — в третью и т.д. Однако по мере развития науки выяснилось, что минералы, содержащие один и тот же неметалл (анион или анионную группу), имеют сходные свойства и похожи между собой гораздо больше, чем минералы с общим металлом.

К тому же минералы с общим анионом встречаются в одинаковой геологической обстановке и имеют близкое происхождение. В результате в современной систематике минералы объединяются в классы по признаку общего аниона или анионной группы .

Единственное исключение составляют самородные элементы, которые встречаются в природе сами по себе, не образуя соединений с другими элементами.

Минералы классифицируются по химическому составу и кристаллической структуре на следующие группы:

  • самородные элементы;
  • сульфиды и сульфосоли;
  • галоидные соединения (галогениды);
  • оксиды;
  • кислородные соли (карбонаты, сульфаты, вольфраматы, фосфаты, силикаты).

В основе принятой в настоящее время классификации минералов лежат химический состав и структура. Большое внимание уделяется также генезису (греч. «генезис» — происхождение), что позволяет познавать закономерности распространения минералов в земной коре.

Самородные элементы

Земная кора содержит не более 0,1 % (по массе) самородных элементов (83 минерала). Их добыча связана со значительными трудностями, в связи с чем многие из них особенно высоко ценятся и, являясь эталонами человеческого труда, используются в золотых запасах стран в качестве обеспечения национальной валюты в международной торговле. Генетически связаны с процессами кристаллизации магмы (Pt, алмаз, графит), с гидротермальными (Аu) и осадочными (S) процессами. Самородное железо часто имеет космическое происхождение.

Для самородных металлов характерны чрезвычайно высокая пластичность, металлический блеск, ковкость, тепло- и электропроводность, обусловливаемые металлической связью в кристаллической решетке.

Характерны также высокие плотности. Ими обладают самые тяжелые минералы: невьянскит (до 21,5 г/см 3) и сыссертскит (до 22,5 г/см 3).

Кроме самородных металлов (Ru, Rh, Pd, Аg, Os, Ir, Pt, Au, Fe, Cu, Ni, Нg) встречаются также самородные металлоиды (As, Sb, Bi) и неметаллы (S, Se, Те, С).

Метеоритное железо изредка наблюдается в форме правильных кубов (гексаэдрическое железо) и октаэдров (октаэдрическое железо). Обычно в виде оплавленных масс неокругленной формы с характерными пальцеобразными впадинами на поверхности. Так называемое «палласово железо» содержит в себе включения оливина (MgFeSiO 4).

Сульфиды

Земная кора содержит не более 0,15 % (по массе) минералов этой группы (230 минералов). С химической точки зрения эти соединения являются солями сероводородной кислоты. Существуют как сульфиды строго стехиометрического состава (FeS 2 , CuFeS 2 и т.п.), так и соединения, в которых содержание серы меняется в определенных пределах (полисульфиды, например FeS x , где х = 1,0.1 — 1,14).

Характерны ионные кристаллические решетки. Большинство сульфидов тяжелые, мягкие, блестящие. Обладают высокой электропроводностью. В большинстве случаев гидротермального происхождения, иногда продукт кристаллизации сульфидной магмы, При выветривании в зоне окисления сульфиды переходят сначала в сульфаты, а затем в оксиды, гидрооксиды, карбонаты.

Сульфиды представляют собой рудную базу цветной металлургии и являются сырьем для производства серной кислоты. Так как сера придает стали красноломкость, присутствие сульфидов в железных рудах снижает их качество. Перед доменной плавкой пылеватые железные руды подвергают окускованию на агломерационных фабриках. В ходе агломерации удается удалить из руды до 99 % сульфидной серы.

Галоидные соединения

Земная кора содержит около 0,5 % (по массе) галоидных соединений, которые имеют гидротермальное или осадочное происхождение. Флюорит встречается часто в пегматитовых жилах. С химической точки зрения эти минералы являются солями кислот: HF, HI, HBr, HCI. Характерны: стеклянный блеск, малые плотности, растворимость в воде. Галоидные соединения имеют ионные решетки.

Металлургия использует большие количества флюорита для разжижения шлаков. Галоидные соединения находят широкое применение в химии, в сельском хозяйстве (удобрения), в пищевой промышленности.

Оксиды

Земная кора содержит до 17 % (по массе) оксидов. Наиболее распространены кварц (12,6 %), оксиды и гидрооксиды железа (3,9 %), оксиды и гидрооксиды AI, Мn, Ti, Сг. Напомним здесь, что главная масса железорудных и марганцевых руд имеют осадочное происхождение. Минералы группы оксидов являются рудной базой черной металлургии. Важнейшие рудные минералы железных и марганцевых руд: гематит (Fe 2 O 3), магнетит (Fe 3 O 4), бурый железняк (Fе 2 O 3 . Н 2 O), пиролюзит (МnО 2), браунит (Мn 2 O 3), гаусманит (Мn 3 O 4), псиломелан (МnO 2 . МnО . n Н 2 O), манганит (МnO 2 . Мn(ОН) 2 .

Для кристаллических решеток оксидов характерна ионная связь. Оксиды Fe, Mn, Сг, Ti имеют полуметаллический блеск и темную окраску. Эти минералы непрозрачны. Для магнетита (Fe3O4) и ильменита (FеО. ТiO2) характерным свойством является их магнитность.

Карбонаты, сульфаты, вольфраматы, фосфаты

Карбонаты, составляющие около 1,7 % от массы земной коры, являются осадочными или гидротермальными минералами. С химической точки зрения это соли угольной кислоты – Н2СО3. Карбонаты имеют ионные кристаллические решетки; характерны малые плотности, стеклянный блеск, светлая окраска (за исключением карбонатов меди), твердость 3-5, реакция с разбавленной НСl. Карбонаты широко используются в черной металлургии в качестве флюса и как сырье для производства огнеупоров и извести.

Земная кора содержит 0,1 % (по массе) сульфатов, имеющих в основном химическое осадочное происхождение и представляющих собой соли серной кислоты Н2SO4. Обычно это мягкие, легкие, светлые минералы. Внешне они похожи на карбонаты, но не реагируют с НСl. Сульфаты используются в химической и строительной промышленности. Они являются чрезвычайно вредной примесью в железных рудах, так как при агломерации удается удалить в газовую фазу не более 60 — 70 % сульфатной серы.

Несмотря на то что многие люди приблизительно представляют себе, что это такое, некоторые не могут дать определение понятию «минерал». Классификация минералов включает в себя большое количество самых разнообразных элементов, каждый из которых нашел применение в той или иной сфере деятельности благодаря своим преимуществам и особенностям. Поэтому важно знать о том, какими свойствами они обладают и как могут быть использованы.

Минералы представляют собой продукты искусственных или естественных химических реакций, которые происходят как внутри земной коры, так и на ее поверхности, и при этом являются однородными химически и физически.

Классификация

На сегодняшний день известно более 4000 различных пород, которые входят в категорию «минерал». Классификация минералов же осуществляется по следующим признакам:

  • генетические (в зависимости от происхождения);
  • практические (сырье, руда, драгоценные камни, горючее и т. п.);
  • химические.

Химическая

На данный момент наиболее распространенной является классификация минералов по химическому составу, которая применяется современными минералогами и геологами. Она базируется на характере соединений, между различными структурами элементами, типах упаковки и еще множестве других особенностей, которые может иметь минерал. Классификация минералов такого рода предусматривает разделение их на пять типов, каждый из которых характеризуется преобладанием определенного характера связи между определенными структурными единицами.

  • самородные элементы;
  • сульфиды;
  • окислы и гидроокислы;
  • соли кислородных кислот;
  • галогениды.

Далее по характеру анионов они разделяются на несколько классов (в каждом типе свое деление), внутри которых уже разбиваются на подклассы, из которых можно выделить: каркасный, цепочечный, островной, координационный и слоистый минерал. Классификация минералов, которые близки между собой по составу и имеют сходную структуру, предусматривает их объединение в различные группы.

Характеристика типов минералов

  • Самородные элементы. Сюда входят самородные металлоиды и металлы, такие как железо, платина или золото, а также неметаллы наподобие алмаза, серы и графита.
  • Сульфиты, а также различные их аналоги. Химическая классификация минералов включает в эту группу соли такие как пирит, галенит и другие.
  • Окислы, гидроокислы и другие их аналоги, представляющие собой соединение металла с кислородом. Магнетит, хромит, гематит, гетит - это основные представители данной категории, которые выделяет химическая классификация минералов.
  • Соли кислородных кислот.
  • Галогениды.

Также стоит отметить, что в группе "соли кислородных кислот" существует еще и классификация минералов по классам:

  • карбонаты;
  • сульфаты;
  • вольфраматы и молибдаты;
  • фосфаты;
  • силикаты.

Также бывают разделяющиеся на три группы:

  • магматические;
  • осадочные;
  • метаморфические.

По происхождению

Классификация минералов по происхождению включает в себя три основные группы:

  • Эндогенные. Такие процессы минералообразования в преимущественном большинстве случаев предусматривают внедрение в кору земли и последующее застывание подземных раскаленных сплавов, которые принято называть магмами. При этом само образование минералов осуществляется в три шага: магматический, пегматитовый и постмагматический.
  • Экзогенные. В данном случае образование минералов осуществляется совершенно в других условиях по сравнению с эндогенным. Экзогенное минералообразование предусматривает химическое и физическое разложение веществ и одновременное формирование новообразований, имеющих устойчивость к другой среде. Кристаллы образуются в результате выветривания эндогенных минералов.
  • Метаморфические. Вне зависимости от путей образования горных пород, их прочности или устойчивости, они всегда будут изменяться под воздействием определенных условий. Породы, которые формируются по причине изменения свойств или состава первоначальных образцов, принято называть метаморфическими.

По Ферсману и Бауэру

Классификация минералов по Ферсману и Бауэру включает в себя несколько пород, предназначенных в основном для изготовления различных изделий. В нее входят:

  • самоцветы;
  • цветные камни;
  • органогенные камни.

Физические свойства

Классификация минералов и горных пород по происхождению и составу включает в себя множество наименований, и при этом каждый элемент имеет уникальные физические свойства. В зависимости от этих параметров определяется ценность той или иной породы, а также возможность его применения в различных сферах деятельности человека.

Твердость

Данная характеристика представляет собой сопротивление определенного твердого тела царапающему воздействию другого. Таким образом, если рассматриваемый минерал мягче того, которым царапают его поверхность, на нем будут оставаться следы.

Принципы классификации минералов по твердости основываются на использовании шкалы Мооса, которая представлена специально подобранными породами, каждая из которых способна царапать своим острым концом предыдущие наименования. Она включает в себя список из десяти наименований, который начинается с талька и гипса, а заканчивается, как многим известно, алмазом - наиболее твердым веществом.

Изначально породой принято проводить по стеклу. Если на нем будет оставаться царапина, то в таком случае классификация минералов по твердости уже предусматривает присваивание ему более 5-го класса. После этого твердость уже уточняется по Соответственно, если на стекле осталась царапина, то в таком случае далее берется образец из 6-го класса (полевой шпат), после чего пробуют чертить им по нужному минералу. Таким образом, если, к примеру, оставил на образце царапину, а апатит, который находится под номером 5, не оставил, ему присваивается класс 5.5.

Не стоит забывать о том, что в зависимости от значения кристаллографического направления у некоторых минералов может различаться твердость. К примеру, у дистена на плоскости спайности твердость вдоль длинной оси кристалла имеет значение 4, в то время как поперек на этой же плоскости оно увеличивается до 6. Очень твердые минералы можно встретить исключительно в группе с неметаллическим блеском.

Блеск

Формирование блеска у минералов осуществляется за счет отражения от их поверхности лучей света. В любом пособии о минералах классификация предусматривает деление на две крупные группы:

  • с металлическим блеском;
  • с неметаллическим блеском.

К первым относятся те породы, которые дают черную черту и являются непрозрачными даже в достаточно тонких осколках. Сюда относится магнетит, графит и уголь. В качестве исключения здесь рассматриваются также минералы с неметаллическим блеском, имеющие цветную черту. Это касается золота с зеленоватой чертой, меди со своеобразной красной, серебра с серебряно-белой, а также ряда других.

Металлический по своей природе схож с блеском свежего излома различных металлов, и его достаточно хорошо можно увидеть на свежей поверхности образца, даже если рассматриваются Классификация изделий с таким блеском также включает в себя непрозрачные образцы, которые являются более тяжелыми в сравнению с первой категорией.

Металлический блеск является характерным для минералов, которые представляют собой руду различных металлов.

Цвет

Стоит отметить, что цвет является постоянным признаком только для некоторых минералов. Таким образом, малахит всегда остается зеленым, золото не теряет своего золотисто-желтого цвета и т. д., в то время как для множества других он является непостоянным. Для определения цвета нужно предварительно получить свежий скол.

Отдельное внимание следует уделить тому, что классификация свойств минералов предусматривает также такое понятие, как цвет черты (молотого порошка), который зачастую не отличается от стандартного. Но при этом существуют и такие породы, у которых цвет порошка значительно отличается от их собственного. К примеру, в их число входит кальцит, который может быть желтым, белым, голубым, синим и еще во множестве других вариаций, но при этом порошок в любом случае будет оставаться белым.

Порошок, или черта минерала, получается на фарфоре, который не должен покрываться никакой глазурью и среди профессионалов называется просто «бисквит». По его поверхности проводится черта определяемым минералом, после чего она немного размазывается пальцем. Не следует забывать о том, что твердые, а также сильно твердые минералы не оставляют за собой никакого следа по причине того, что этот «бисквит» они попросту будут царапать, поэтому предварительно нужно соскоблить определенную часть с них на белую бумагу, и затем уже растереть до нужного состояния.

Спайность

Данное понятие подразумевает свойство минерала раскалываться или же расщепляться в некотором направлении, оставляя при этом блестящую гладкую поверхность. Стоит отметить тот факт, что Эразм Бартолин, который открыл данное свойство, отправил результаты проведенных исследований довольно авторитетной комиссии, включающей в себя таких известных ученых, как Бойль, Гук, Ньютон и еще множество других, но они признали обнаруженные явления случайными, а законы недействительными, хотя уже буквально через столетие оказалось, что все результаты были верны.

Таким образом, предусматривается пять основных градаций спайности:

  • весьма совершенная - минерал можно легко расщепить на небольшие пластинки;
  • совершенная - при любых ударах молотком образец будет раскалываться на обломки, которые ограничиваются плоскостями спайности;
  • ясная или средняя - при попытке раскалывания минерала формируются обломками, которые ограничиваются не только плоскостями спайности, но и неровными поверхностями в случайных направлениях;
  • несовершенная - обнаруживается с определенными сложностями;
  • весьма несовершенная - спайность практически отсутствует.

Определенные минералы имеют сразу несколько направлений спайности, что зачастую становится для них основным диагностическим признаком.

Излом

Под этим понятием подразумевается поверхность раскола, которая прошла в минерале не по спайности. На сегодняшний день принято различать основные пять типов изломов:

  • ровный - на поверхности отсутствуют какие-либо заметные изгибы, но при этом она не зеркально ровная, как в случае со спайностью;
  • ступенчатый - характерен для кристаллов, имеющих более-менее ясную и совершенную спайность;
  • неровный - проявляется, к примеру, у апатита, а также ряда других минералов, имеющих несовершенную спайность;
  • занозистый - характерен для минералов волокнистого сложения и чем-то схож с изломом древесины поперек волокнистости;
  • раковистый - по форме своей поверхности схож с раковиной;

Другие свойства

Достаточно большое количество минералов имеет такой диагностический или отличительный признак, как магнитность. Для ее определения принято использовать стандартный компас или специальный намагниченный нож. Проведение испытаний в данном случае осуществляется следующим образом: берется небольшой кусочек или же малое количество порошка испытуемого материала, после чего к нему притрагиваются намагниченным ножом или подковкой. Если после этой процедуры частички минерала начинают притягиваться, это говорит о наличии у него определенной магнитности. При использовании компаса его кладут на какую-нибудь ровную поверхность, после чего дожидаются выравнивания стрелки и подносят к ней минерал, не прикасаясь при этом к самому устройству. Если стрелка начинает смещаться, это говорит о том, что он магнитный.

Определенные минералы, в составе которых содержатся углекислые соли, под воздействием соляной кислоты начинают выделять углекислый газ, который проявляется в визе пузырьков, поэтому многие называют это «кипением». Среди таких минералов выделяются: малахит, кальцит, мел, мрамор и известняк.

Также некоторые вещества можно хорошо растворять в воде. Такую способность минералов несложно определить на вкус, и в частности, это касается а также и других.

Если требуется проведение исследований минералов на плавкость и горение, то нужно предварительно отколоть небольшой кусочек от образца, после чего с помощью пинцета внести его непосредственно в пламя от газовой горелки, спиртовки или же свечи.

Формы их нахождения в природе

В преимущественном большинстве случаев в природе различные минералы встречаются в виде сростков или одиночных кристаллов, а также могут показываться в виде скоплений. Последние состоят из большого количества зерен, имеющих внутреннее Таким образом, выделяется три основных группы, имеющих характерный внешний вид:

  • изометрические, одинаково развитые во всех трех направлениях;
  • удлиненные, имеющие более вытянутые формы в одном из направлений;
  • вытянутые в двух направлениях при сохранении третьего в коротком виде.

При этом стоит отметить, что некоторые минералы могут собой образовывать закономерно сросшиеся кристаллы, которые потом называют двойниками, тройниками и другими наименованиями. Такие образцы зачастую являют собой результат срастания или же взаимного прорастания кристаллов.

Виды

Не стоит путать закономерные сростки и незакономерные агрегаты кристаллов, к примеру, со «щетками» или же друзами, которые нарастают на стенах пещер и различных полостей в горных породах. Друзы представляют собой сростки, образующиеся из нескольких более или менее правильных кристаллов и при этом прирастающие одним концом к какой-нибудь породе. Для их формирования требуется открытая полость, которая предусматривает возможность свободного роста минералов.

Помимо всего прочего, многие кристаллические минералы отличаются достаточно сложными неправильными формами, что приводит к образованию дендритов, натечных форм и других. Формирование дендритов осуществляется по причине слишком быстрой кристаллизации минералов, расположенных в тонких трещинах и порах, причем породы в данном случае начинают напоминать довольно причудливые ветви растений.

Нередко бывают и такие ситуации, когда минералы практически полностью заполняют небольшое пустое пространство, что приводит к образованию секреции. У них используется концентрическое строение, а минеральное вещество заполняет его к центру от периферии. Достаточно крупные секреции, у которых внутри остается пустое пространство, принято называть жеодами, в то время как небольшие образования именуются миндалинами.

Конкреции - это стяжения некорректной округлой или шарообразной формы, формирование которых возникает по причине активного отложения минеральных веществ вокруг определенного центра. Довольно часто для них характерна радиально-лучистая внутренняя конструкция, а в отличие от секреций рост осуществляется, наоборот, к периферии от центра.

Каждый человек хотя бы раз в жизни видел минералы - продукты естественных химических реакций, происходивших внутри земной коры миллионы лет назад. При этом далеко не все могут рассказать о том, что такое минерал, и для чего он нужен. В нашей статье будет подробно рассказано о типах минеральных отложений, а также о способах их использования.

Что такое минерал?

Минералами называют твердые неорганические вещества природного происхождения. Они обладают кристаллической структурой, что и является основной их отличительной особенностью. Некоторые минералы могут производиться искусственным путем. Независимо от происхождения они будут обладать рядом полезных свойств.

Существуют ли жидкие минералы? Если брать обычные условия жизни, то да. Это, например, естественная ртуть - самородное вещество, обладающее твердостью только при низкой температуре. Некоторые виды льдов ученые также относят к минералам. Однако воду к рассматриваемой группе не причисляют.

Вопрос о том, что такое минерал, не до конца решен и по сей день. Так, немногочисленные специалисты относят нефть, битумы и асфальты к группе минеральных веществ. Целесообразность таких утверждений сомнительна.

Типы минералов

По Бауэру и Ферсману, химикам конца XIX века, все минеральные породы делятся на самоцветы, органогенные камни и цветные вещества. Такая классификация имеет столь своеобразный вид из-за глубокого убеждения прагматичных академиков, что все камни и минералы предназначены для изготовления различных изделий - инструментов и украшений.

Дабы лучше разобраться в вопросе о том, что же представляют собой минеральные вещества, стоит привести наиболее распространенную научную классификацию. Согласно структурно-химическому принципу, минералы делятся на породообразующие - составляющие большинство горных пород, а также редкие, рудные и акцессорные (не слагающие больше 5% от породы).

Самородный класс минералов включает в себя металлы и металлоиды. Рудные вещества образуют большую часть самородной группы. Акцессорные минералы характеризуются особой редкостью.

Химическая классификация

Химическая структура большинства минералов примерно одинаковая. В настоящее время принято деление рассматриваемых веществ на классы. Получается следующая классификация:

  • Силикаты. Многочисленный класс, включающий в себя более 800 различных минеральных отложений. Силикаты составляют большинство метаморфических и магматических пород. Некоторые минералы здесь отличаются общностью построения и состава. В качестве примера стоит выделить пироксены, слюды, полевые шпаты, амфиболы, глинистые материалы и многое другое. Состав большинства силикатов именуется алюмосиликатным.
  • Карбонаты. В число этого класса входит порядка 80 минеральных пород. Здесь распространены доломиты, кальциты и магниты. Происхождением обязаны отдельным водным растворам. Разрушаемы в кислотах.
  • Галоиды - группа из ста различных минералов. Являются легкорастворимыми, образуются из осадочных пород. Самое частое вещество - галит.
  • Сульфиды - минералы, разрушаемые в зоне выветривания. Типичным представителем является пирит.
  • Сульфаты. Обладают светлой окраской и невысоким уровнем твердости. Наибольшее распространение получил гипс.
  • Оксиды и гидроксиды. Составляют порядка 17% от массы земной коры. Основные виды - опалы, лимониты и кварцы.

Таким образом, почти все минералы обладают похожими признаками, хоть и состав у веществ различный.

Разнообразие минералов

Что такое минерал? Ответить на этот вопрос непросто. Следует учитывать, что в сегодняшнем мире существует более 4 тыс. различных типов подземных богатств. Минералы ежегодно открываются и "закрываются". Например, найденное в горных породах вещество одним своим существованием доказывает несостоятельность целой классификации, составленной учеными. Такие случаи - далеко не редкость.

Фото силикатов представлено вашему вниманию ниже.

Следует учитывать, что 4 тыс. минералов - это не такая уж и большая цифра. Если сравнивать ее с общим количеством неорганических соединений, то разница будет очевидна: последних содержится около миллиона видов. Чем объясняют геологи столь небогатое разнообразие минеральных богатств? Во-первых, распространенностью элементов в Солнечной системе. На нашей планете преобладают кремний и кислород. Соединение этих веществ приводит к появлению силикатов - подавляющей минеральной группы на Земле. С другой стороны, минералы так рассеяны, что поиски новых элементов будет делом еще нескольких сотен поколений. Вторая причина ограниченности минералов - это неустойчивость большинства химических соединений.

Происхождение минералов

Ученые называют три основных пути происхождения горных минералов. Первый вариант именуется эндогенным. Подземные раскаленные сплавы, которые принято называть магматическим веществом, внедряются в земную кору, а после застывают там. Сама магма образуется вследствие извержения вулканов. Она проходит три стадии: из раскаленного состояния магма становится твердой - это результат пегматитовых процессов. После она окончательно застывает. Это следствие постмагматических процессов.

Есть также экзогенный вариант происхождения минералов. В данном случае происходит физическое и химическое разложение веществ. Одновременно формируются новые образования, обладающие большой уступчивостью к среде. Простой пример: в результате выветривания эндогенного материала образуются кристаллы.

Последний способ происхождения минералов имеет метаморфический характер. Все вещества будут изменяться под воздействием определенных условий - вне зависимости от вариантов образования горных пород. По сути, меняется первоначальный образец - он приобретает новые свойства и элементы состава.

Свойства минералов

Важнейшим свойством любого минерального образования является наличие кристаллохимической структуры. Все остальные признаки рассматриваемых пород вытекают именно отсюда.

На сегодняшний день разработана единая классификация диагностических признаков, свойственных минеральным веществам. Здесь следует выделить твердость, определяемую по шкале Мооса, а также цвет, блеск, излом, спайность, магнитность, хрупкость и побежалость. Каждое свойство рассматриваемых пород будет подробно изучено далее.

Понятие твердости

Что такое твердость? Существует несколько определений для этого понятия. Наиболее распространенное описание характеризует твердость как уровень сопротивления определенного тела царапающему, сдавливающему или режущему воздействию. Уровень твердости определяется по шкале Мосса. В ней подобраны специальные горные породы, каждая из которых характеризуется способностью царапать поверхности острым концом. Мосс составил десятку из наиболее распространенных элементов. Самым мягким материалом здесь является тальк и гипс. Как известно, гипс, попадая в воду, увеличивается в размере до 30%. Самая твердый тип и порода минерала - это алмаз.

Проведение веществом по стеклу должно оставлять за собой царапины различной глубины. Сам факт существования царапины уже присваивает минералу как минимум пятый класс из десяти. Самые твердые вещества встречаются в группах минералов, обладающих неметаллическим блеском. Именно блеск является вторым важным свойством минералов, и он напрямую взаимосвязан с твердостью.

Блеск

Уровень блеска металлов проверяется за счет отражения от них лучей солнца. Существует два уровня блеска - металлический и неметаллический. К первой группе относятся породы, дающие при резьбе по стеклу черную черту. Такие вещества непрозрачны даже в очень тонких осколках. К видам подземных минералов с неметаллическим блеском относят графит, магнетит, уголь и некоторые другие вещества. Все они плохо отражаются на солнце и дают темную черту. Небольшую часть материалов с металлическим отблеском составляют вещества, дающие цветную черту: зеленую (золото), красную (медь), белую (серебро) и т.д.

Минералы с металлическим блеском лучше отражают солнечный свет. Сами по себе они обладают высокой твердостью. Особое место здесь занимает руда.

Цвет

Цвет, в отличие от твердости и блеска, не является постоянным признаком для большинства минералов. Так, твердость или блеск со временем остаются неизменными. Окраска же меняется в зависимости от условий хранения. В качестве примеров минералов, редко меняющих свой цвет, следует выделить малахит, который никогда не поменяет своего зеленого цвета, и золото, всегда остающееся желтым.

Фото малахита вы можете увидеть ниже.

Цвет меняется и от состояния минерала. Например, в геологии распространено понятие цвета черты. Минерал, поцарапавший стеклянную поверхность, оставляет за собой небольшое количество порошка, который и образует собой черту. Цвет такого порошка часто отличается от природной окраски камня. Все дело в составе минерала: в него может входить кальцит, который меняет окраску в зависимости от количества и способа смешения с другими веществами.

Излом и спайность

Под спайностью понимается свойство минерала расщепляться или раскалываться в определенном направлении. Так, после разлома чаще всего образуется гладкая блестящая поверхность. Чтобы добиться такого результата, нужно расщеплять минерал по строго определенной линии. Существует пять градаций спайности:


Диагностическим признаком для многих минералов является наличие сразу нескольких направлений спайности. По итогу расщепления минерал имеет изломы, который также обладает определенными свойствами. Так, ученые выделяют пять типов излома:

  • раковистый - похож на раковину;
  • занозистый - для излома характерны волокнистости или материалы волокнистого содержания;
  • неровный - наличие несовершенной спайности (например, у апатита);
  • ступенчатый - по результатам спайности образуется почти идеально гладкая поверхность (местами может иметь, однако, неровности в виде ступенек);
  • ровный - на поверхности минерала по результатам спаивания отсутствуют какие-либо заметные изгибы или неровности.

Существует и ряд других признаков, по которым можно определять минералы. Это, например, побежалость - наличие тонкой цветной пленки, образующейся на веществе по результатам выветривания или окисления. Также следует выделить хрупкость, указывающую на прочность минерала, и магнитность, характеризующуюся содержанием двухвалентного железа.

Минералы в промышленности

В каких сферах общественной деятельности применяются минералы? Это строительство, металлургия, а также химическое производство.

Строительные материалы нередко разбавляются определенными минералами, что позволяет отрегулировать прочность и качество вещества. В химической промышленности присутствие рассматриваемых элементов также не является редкостью. Минеральные компоненты используют в косметической, медицинской и пищевой сферах. Например, в аптеках представлено немало препаратов, включающих в себя витамины и минералы. Эти два компонента отлично взаимодействуют, дополняют друг друга. Они способствуют укреплению здоровья людей и улучшению их внешнего вида.

Добыча и изучение минералов всегда считались важными и актуальными занятиями. Необходимо всячески поддерживать проведение научных изысканий в области геологии, а также активно применять витамины и минералы в повседневной жизни.

Кварц - SiO 2 . Устойчивая при низких температурах модификация обычно называется простым кварцем. Диагностические признаки . Кристаллы кварца диагностируются по форме, твёрдости, раковистому излому и отсутствию спайности. Кварц можно спутать с халцедоном, полевым шпатом, нефелином и топазом. Происхождение . Около 65 % земной коры состоит из кварца, называют его вездесущим, породообразующим. Во многих интрузивных и эффузивных кислых магматических породах он является чуть ли не главным минералом. Входит в состав пегматитов, присутствует у многих метаморфических породах. В значительных массах, как жильный минерал, распространен в гидротермальных месторождениях. Присутствует и в осадочных породах (кварцевые пески, кварцевые песчаники, кварцевые конгломераты). Химический состав. Разновидности, окрашенные в другие цвета имеют разнообразные примеси или включения других минералов. Сингония кварца тригональная, а высокотемпературная модификация a - кварца гексагональная. Облик кристаллов чаще гексагонально дипирамидальный. Грани призмы чаще укорочены или отсутствуют. Известны очень крупные кристаллы. В Казахстане найден кристалл весивший 70 т. Грани кристаллов покрыты поперечной штриховкой Распространены. в природе друзы, щетки, зернистые массы. Для кварца характерно двойникование, причем срастаются кристаллы по разным законам, двойники дофинейские, бразильские, японские. Цвет может быть самым различным. Прозрачные и полупрозрачные разновидности имеют различные названия: 1) горный хрусталь — бесцветные водяно-прозрачные кристаллы; 2) аметист — фиолетовый, сиреневый, лиловый, малиновый, прозрачный; 3) раухтопаз — дымчатый, окрашенный в сероватые или буроватые тона; 4) морион — окрашенный в черный цвет; 5) цитрин — золотисто-жёлтый или лимонно-желтый; 6) празем — зеленоватый кварц; 7) розовый кварц ; 8) молочно -белый кварц; 9) авантюрин (искряк). Бле ск стеклянный. Твердость 7. Спайность отсутствует. Плотность 2,5 — 2,8. Прочие свойства. Способен пропускать ультрафиолетовые лучи, является пьезоэлектриком. Расплавленный кварц легко застывает и образует кварцевое стекло (аморфный кварц). Практическое применение. Применение его разнообразно. Красивые разновидности используются в ювелирном деле. Чистые кристаллы с уникальными свойствами применяются в электронике, ультразвуковой технике, оптическом приборостроении. Раухтопаз, горный хрусталь, морион используется как стабилизатор радиоволн. Горный хрусталь применяется в телемеханике, автоматике, в высококачественных генераторах. Чистые маложелезистые кварцевые пески служат прекрасным сырьем в стекольно-керамической промышленности, для производства карборунда (SiС). Карборунд или карбид кремния - первоклассный абразивный материал. Кварцевые пески тонких фракций применяются в пескоструйных аппаратах для полировки каменных и металлических изделий, а также для распиловки горных пород. Месторождения. Месторождения кварца имеются на Урале, так называемые “хрустальные погреба”, содержащие горный хрусталь, морион, аметист, топаз и др. встречаются в Приморье, Якутии. На Кольском полуострове известен беломорский аметист с мыса Корабль. Пегматитовые жилы с кристаллами кварца распространены на Алдане, Памире, Волыни. В Якутии (Большая Хатыма) добывается горный хрусталь. Естественные кристаллы кварца для промышленности поставляет Бразилия. Имеется кварц в Шри-Ланке, Индии, Бирме, Уругвае, Швейцарии, на Мадагаскаре и др. регионах. В музее насчитывается свыше 700 образцов кварца и его разновидностей. Широко представлены самые разнообразные кристаллы весом от 440 кг и до 1 г (скипетровидные, с фигурами роста и др.), имеются друзы, щётки, кварц жильный, кварц с другими минералами. Самая богатая Уральская коллекция кварца: гор. хрусталь из месторождения Гумбейки, Берёзовское, Астафьево; морион из Мурзинки; кварц-празем, кварц с хлоритом и адуляром и кварц “волосатик” из Приполярного Урала; кварц розовый (Гумбейка); сростки кристаллов из Миаса, Пышмы, Наглы. Красивые друзы из Камчатки и п-ова Чукотка (Иультинское); кварц с цинковой обманкой (Англия); кварц с рубеллитом из Читинской обл (Борщёвочный кряж). Имеется кварц из Забайкалья (Адун-Чолонг), из Мангыстау; кварц натёчный из Киргизии, кварц розовый из Алтая (Тигерецкие белки, Колывань), Урала (Гумбейка) и Ю. Африки.